

A001931


Number of fixed 3dimensional polycubes with n cells; lattice animals in the simple cubic lattice (6 nearest neighbors), faceconnected cubes.
(Formerly M2996 N1213)


11



1, 3, 15, 86, 534, 3481, 23502, 162913, 1152870, 8294738, 60494549, 446205905, 3322769321, 24946773111, 188625900446, 1435074454755, 10977812452428, 84384157287999, 651459315795897
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

This gives the number of polycubes up to translation (but not rotation or reflection).  Charles R Greathouse IV, Oct 08 2013


REFERENCES

A Asinowski, G Barequet, Y Zheng, Polycubes with small perimeter defect, Proceedings of the TwentyNinth Annual ACMSIAM Symposium on Discrete Algorithms, DOI 10.1137/1.9781611975031.6, 2018.
Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
W. F. Lunnon, Symmetry of cubical and general polyominoes, pp. 101108 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..19.
G. Aleksandrowicz and G. Barequet, Counting ddimensional polycubes and nonrectangular planar polyominoes, Computing and Combinatorics, 12th Annual International Conference, COCOON 2006, Taipei, Taiwan, August 1518, 2006, pp. 418427.
G. Aleksandrowicz and G. Barequet, Counting ddimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215229.
Andrew R Conway, The design of efficient dynamic programming and transfer matrix enumeration algorithms, Journal of Physics A: Mathematical and Theoretical, 2 August 2017. For another version see https://arxiv.org/pdf/1610.09806.pdf
Kevin L. Gong, Polyominoes Home Page
S. Luther and S. Mertens, Counting lattice animals in high dimensions, Journal of Statistical Mechanics: Theory and Experiment, 2011 (9), 546565.
S. Mertens, Lattice animals: a fast enumeration algorithm and new perimeter polynomials, J. Stat. Phys. 58 (56) (1990) 10951108, Table 1.
H. Redelmeier, Emails to N. J. A. Sloane, 1991


CROSSREFS

Cf. A000162, A001420, A151830A151835.
Sequence in context: A127085 A093615 A191148 * A180677 A220875 A075841
Adjacent sequences: A001928 A001929 A001930 * A001932 A001933 A001934


KEYWORD

nonn,nice


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Edited by Arun Giridhar, Feb 14 2011
a(17) from Achim Flammenkamp, Feb 15 1999.
a(18) from the Aleksandrowicz and Barequet paper (N. J. A. Sloane, Jul 09 2009)
a(19) from Luther and Mertens by Gill Barequet, Jun 12 2011


STATUS

approved



