login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A075840
Primes of the form (2*n)!/(n!)^2+1.
2
2, 3, 7, 71, 3433, 2704157, 35345263801, 2104098963721, 6892620648693261354601, 410795449442059149332177041, 1520803477811874490019821888415218657, 5949105755928259715106809205795376486501, 1480212998448786189993816895482588794876101
OFFSET
1,1
REFERENCES
New Zealand Science Monthly, Bulletin Board, Feb. 1999. Binomial(300,150)+185 = nextprime.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..25
EXAMPLE
7 is a term because C(4,2)+1 = 6+1 = 7 is prime.
MATHEMATICA
a = Select[ Range[100], PrimeQ[Binomial[2#, # ] + 1] & ]; Binomial[2a, a] + 1
Select[Table[(2 n)! / (n!)^2 + 1, {n, 0, 80}], PrimeQ] (* Vincenzo Librandi, Mar 17 2015 *)
PROG
(PARI) v=[]; for(n=0, 100, x=bin(2*n, n)+1; if(isprime(x), v=concat(v, x), )); v
(Magma) [a: n in [0..100] | IsPrime(a) where a is Factorial(2*n) div Factorial(n)^2+1]; // Vincenzo Librandi Mar 17 2015
CROSSREFS
Cf. A092751 = n such that (2*n)!/(n!)^2+1 is prime, A112858 = primes of the form (2*n)!/(n!)^2-1.
Cf. A000984, n's are in A066699.
Sequence in context: A130309 A090870 A088542 * A096225 A333132 A035094
KEYWORD
nonn
AUTHOR
Donald S. McDonald, Oct 14 2002
EXTENSIONS
Edited by Robert G. Wilson v, Oct 15 2002
Definition corrected by Alexander Adamchuk, Nov 30 2007
Edited by N. J. A. Sloane, Nov 30 2007
a(13) from Vincenzo Librandi, Mar 17 2015
STATUS
approved