login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241976
Values of k such that k^2 + (k+3)^2 is a square.
3
0, 9, 60, 357, 2088, 12177, 70980, 413709, 2411280, 14053977, 81912588, 477421557, 2782616760, 16218279009, 94527057300, 550944064797, 3211137331488, 18715879924137, 109084142213340, 635788973355909, 3705649697922120, 21598109214176817, 125883005587138788
OFFSET
1,2
COMMENTS
A075841 gives the corresponding values of sqrt(n^2 + (n+3)^2).
FORMULA
G.f.: 3*x^2*(x-3) / ((x-1)*(x^2-6*x+1)).
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3).
a(n) = 3*A001652(n-1).
a(n) = -3*(2 + (3-2*sqrt(2))^n*(1+sqrt(2)) - (-1+sqrt(2))*(3+2*sqrt(2))^n) / 4. - Colin Barker, Apr 13 2017
EXAMPLE
9 is in the sequence because 9^2 + 12^2 = 225 = 15^2.
MATHEMATICA
CoefficientList[Series[3 x (x - 3)/((x - 1) (x^2 - 6 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 11 2014 *)
PROG
(PARI) concat(0, Vec(3*x^2*(x-3)/((x-1)*(x^2-6*x+1)) + O(x^100)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Aug 10 2014
STATUS
approved