login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Values of k such that k^2 + (k+3)^2 is a square.
3

%I #22 May 04 2018 11:34:40

%S 0,9,60,357,2088,12177,70980,413709,2411280,14053977,81912588,

%T 477421557,2782616760,16218279009,94527057300,550944064797,

%U 3211137331488,18715879924137,109084142213340,635788973355909,3705649697922120,21598109214176817,125883005587138788

%N Values of k such that k^2 + (k+3)^2 is a square.

%C A075841 gives the corresponding values of sqrt(n^2 + (n+3)^2).

%H Vincenzo Librandi, <a href="/A241976/b241976.txt">Table of n, a(n) for n = 1..200</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-7,1).

%F G.f.: 3*x^2*(x-3) / ((x-1)*(x^2-6*x+1)).

%F a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3).

%F a(n) = 3*A001652(n-1).

%F a(n) = -3*(2 + (3-2*sqrt(2))^n*(1+sqrt(2)) - (-1+sqrt(2))*(3+2*sqrt(2))^n) / 4. - _Colin Barker_, Apr 13 2017

%e 9 is in the sequence because 9^2 + 12^2 = 225 = 15^2.

%t CoefficientList[Series[3 x (x - 3)/((x - 1) (x^2 - 6 x + 1)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Aug 11 2014 *)

%o (PARI) concat(0, Vec(3*x^2*(x-3)/((x-1)*(x^2-6*x+1)) + O(x^100)))

%Y Cf. A001652, A065113, A075841.

%K nonn,easy

%O 1,2

%A _Colin Barker_, Aug 10 2014