login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245704
Permutation of natural numbers: a(1) = 1, a(A014580(n)) = A000040(a(n)), a(A091242(n)) = A002808(a(n)), where A000040(n) = n-th prime, A002808(n) = n-th composite number, and A014580(n) and A091242(n) are binary codes for n-th irreducible and n-th reducible polynomial over GF(2), respectively.
17
1, 2, 3, 4, 6, 8, 5, 9, 12, 15, 7, 10, 13, 16, 21, 25, 14, 18, 19, 22, 26, 33, 38, 24, 11, 28, 30, 34, 39, 49, 23, 55, 36, 20, 42, 45, 37, 50, 56, 69, 47, 35, 77, 52, 32, 60, 17, 64, 54, 70, 78, 94, 66, 51, 29, 105, 74, 48, 41, 84, 53, 27, 88, 76, 95, 106, 73, 125, 91, 72, 44, 140, 97, 100, 68, 58, 115, 75, 40
OFFSET
1,2
COMMENTS
All the permutations A091203, A091205, A106443, A106445, A106447, A235042 share the same property that the binary representations of irreducible GF(2) polynomials (A014580) are mapped bijectively to the primes (A000040) but while they determine the mapping of corresponding reducible polynomials (A091242) to the composite numbers (A002808) by a simple multiplicative rule, this permutation employs index-recursion also in that case.
FORMULA
a(1) = 1, after which, if A091225(n) is 1 [i.e. n is in A014580], then a(n) = A000040(a(A091226(n))), otherwise a(n) = A002808(a(A091245(n))).
As a composition of related permutations:
a(n) = A227413(A245701(n)).
a(n) = A245822(A091205(n)).
Other identities. For all n >= 1, the following holds:
a(A091230(n)) = A007097(n). [Maps iterates of A014580 to the iterates of primes. Permutation A091205 has the same property].
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials (= A014580) to primes and the corresponding representations of reducible polynomials to composites].
PROG
(PARI)
allocatemem(123456789);
default(primelimit, 2^22)
A091226 = vector(2^22);
A002808(n)={ my(k=-1); while( -n + n += -k + k=primepi(n), ); n}; \\ This function from M. F. Hasler
isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
j=0; n=2; while((n < 2^22), if(isA014580(n), A091226[n] = A091226[n-1]+1, A091226[n] = A091226[n-1]); n++)
A091245(n) = ((n-A091226[n])-1);
A245704(n) = if(1==n, 1, if(isA014580(n), prime(A245704(A091226[n])), A002808(A245704(A091245(n)))));
for(n=1, 10001, write("b245704.txt", n, " ", A245704(n)));
(Scheme, with memoization-macro definec)
(definec (A245704 n) (cond ((= 1 n) n) ((= 1 (A091225 n)) (A000040 (A245704 (A091226 n)))) (else (A002808 (A245704 (A091245 n))))))
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 02 2014
STATUS
approved