login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091230
Iterates of A014580, starting with a(0) = 1, a(n) = A014580^(n)(1). [Here A014580^(n) means the n-th fold application of A014580].
6
1, 2, 3, 7, 25, 137, 1123, 13103, 204045, 4050293, 99440273
OFFSET
0,2
FORMULA
a(0)=1, a(n) = A014580(a(n-1)). [The defining recurrence].
From Antti Karttunen, Aug 03 2014: (Start)
Other identities. For all n >= 0, the following holds:
A091238(a(n)) = n+1.
a(n) = A091204(A007097(n)) and A091205(a(n)) = A007097(n).
a(n) = A245703(A007097(n)) and A245704(a(n)) = A007097(n).
a(n) = A245702(A000079(n)) and A245701(a(n)) = A000079(n).
(End)
PROG
(PARI)
isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
prev=1; i=0; print1(1, ", "); for(n=1, 123456789, if(isA014580(n), i++; if((i == prev), print1(n, ", "); prev=n))) \\ Antti Karttunen, Aug 02 2014
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 03 2004
EXTENSIONS
Terms a(8)-a(10) computed by Antti Karttunen, Aug 02 2014
STATUS
approved