login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245702
Permutation of natural numbers: a(1) = 1, a(2n) = A014580(a(n)), a(2n+1) = A091242(a(n)), where A014580(n) = binary code for n-th irreducible polynomial over GF(2) and A091242(n) = binary code for n-th reducible polynomial over GF(2).
9
1, 2, 4, 3, 5, 11, 8, 7, 6, 13, 9, 47, 17, 31, 14, 25, 12, 19, 10, 59, 20, 37, 15, 319, 62, 87, 24, 185, 42, 61, 21, 137, 34, 55, 18, 97, 27, 41, 16, 415, 76, 103, 28, 229, 49, 67, 22, 3053, 373, 433, 79, 647, 108, 131, 33, 1627, 222, 283, 54, 425, 78, 109, 29, 1123, 166, 203, 45, 379, 71, 91, 26, 731, 121, 145, 36, 253, 53, 73, 23
OFFSET
1,2
FORMULA
a(1) = 1, a(2n) = A014580(a(n)), a(2n+1) = A091242(a(n)).
As a composition of related permutations:
a(n) = A245703(A227413(n)).
Other identities:
For all n >= 1, 1 - A091225(a(n)) = A000035(n). [Maps even numbers to binary representations of irreducible GF(2) polynomials (= A014580) and odd numbers to the corresponding representations of reducible polynomials].
PROG
(PARI)
allocatemem(123456789);
a014580 = vector(2^18);
a091242 = vector(2^22);
isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
i=0; j=0; n=2; while((n < 2^22), if(isA014580(n), i++; a014580[i] = n, j++; a091242[j] = n); n++)
A245702(n) = if(1==n, 1, if(0==(n%2), a014580[A245702(n/2)], a091242[A245702((n-1)/2)]));
for(n=1, 383, write("b245702.txt", n, " ", A245702(n)));
(Scheme, with memoizing definec-macro)
(definec (A245702 n) (cond ((< n 2) n) ((even? n) (A014580 (A245702 (/ n 2)))) (else (A091242 (A245702 (/ (- n 1) 2))))))
CROSSREFS
Inverse: A245701.
Similar entanglement permutations: A193231, A227413, A237126, A243288, A245703, A245704.
Sequence in context: A338161 A232799 A276472 * A297706 A374799 A093416
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 02 2014
STATUS
approved