login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Permutation of natural numbers: a(1) = 1, a(2n) = A014580(a(n)), a(2n+1) = A091242(a(n)), where A014580(n) = binary code for n-th irreducible polynomial over GF(2) and A091242(n) = binary code for n-th reducible polynomial over GF(2).
9

%I #15 Aug 10 2014 06:20:26

%S 1,2,4,3,5,11,8,7,6,13,9,47,17,31,14,25,12,19,10,59,20,37,15,319,62,

%T 87,24,185,42,61,21,137,34,55,18,97,27,41,16,415,76,103,28,229,49,67,

%U 22,3053,373,433,79,647,108,131,33,1627,222,283,54,425,78,109,29,1123,166,203,45,379,71,91,26,731,121,145,36,253,53,73,23

%N Permutation of natural numbers: a(1) = 1, a(2n) = A014580(a(n)), a(2n+1) = A091242(a(n)), where A014580(n) = binary code for n-th irreducible polynomial over GF(2) and A091242(n) = binary code for n-th reducible polynomial over GF(2).

%H Antti Karttunen, <a href="/A245702/b245702.txt">Table of n, a(n) for n = 1..383</a>

%H <a href="/index/Ge#GF2X">Index entries for sequences operating on GF(2)[X]-polynomials</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(1) = 1, a(2n) = A014580(a(n)), a(2n+1) = A091242(a(n)).

%F As a composition of related permutations:

%F a(n) = A245703(A227413(n)).

%F Other identities:

%F For all n >= 1, 1 - A091225(a(n)) = A000035(n). [Maps even numbers to binary representations of irreducible GF(2) polynomials (= A014580) and odd numbers to the corresponding representations of reducible polynomials].

%o (PARI)

%o allocatemem(123456789);

%o a014580 = vector(2^18);

%o a091242 = vector(2^22);

%o isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from _Charles R Greathouse IV_

%o i=0; j=0; n=2; while((n < 2^22), if(isA014580(n), i++; a014580[i] = n, j++; a091242[j] = n); n++)

%o A245702(n) = if(1==n, 1, if(0==(n%2), a014580[A245702(n/2)], a091242[A245702((n-1)/2)]));

%o for(n=1, 383, write("b245702.txt", n, " ", A245702(n)));

%o (Scheme, with memoizing definec-macro)

%o (definec (A245702 n) (cond ((< n 2) n) ((even? n) (A014580 (A245702 (/ n 2)))) (else (A091242 (A245702 (/ (- n 1) 2))))))

%Y Inverse: A245701.

%Y Cf. A000035, A014580, A091242, A091225.

%Y Similar entanglement permutations: A193231, A227413, A237126, A243288, A245703, A245704.

%K nonn

%O 1,2

%A _Antti Karttunen_, Aug 02 2014