This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245699 Decimal expansion of the expected distance from a randomly selected point in a 45-45-90 degree triangle of base length 1 to the vertex of the right angle: (4+sqrt(2)*log(3+2*sqrt(2)))/12. 1
 5, 4, 1, 0, 7, 5, 0, 8, 0, 0, 4, 6, 7, 4, 3, 5, 0, 4, 4, 6, 4, 6, 7, 3, 3, 6, 0, 0, 8, 3, 5, 2, 2, 6, 6, 7, 5, 5, 0, 2, 3, 1, 7, 7, 0, 7, 8, 2, 1, 8, 9, 0, 8, 4, 2, 9, 9, 5, 7, 1, 5, 9, 2, 0, 3, 2, 0, 5, 6, 6, 6, 8, 1, 8, 2, 3, 3, 8, 0, 6, 0, 1, 5, 5, 8, 8, 9, 6, 9, 1, 0, 7, 8, 5, 4, 2, 2, 0, 9, 3, 5, 6, 5, 2, 7, 8, 8, 4, 0, 3, 0, 4, 7, 4, 2, 3, 1, 8, 1, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 FORMULA Equals Integral_{y = 0..Pi/4; x = 0..1/(sqrt(2)*cos(y))} 4x^2 dx dy. Equals Integral_{y = 0..Pi/4} (sqrt(2)/3)*sec^3(y) dy. EXAMPLE 0.54107508004674350446467336008352266755023177078218908429957159203205... MAPLE evalf((4+sqrt(2)*log(3+2*sqrt(2)))/12, 100); # Muniru A Asiru, Oct 07 2018 MATHEMATICA RealDigits[(4 + Sqrt[2]*Log[3 + 2*Sqrt[2]])/12, 10, 100][[1]] (* G. C. Greubel, Oct 06 2018 *) PROG (PARI) default(realprecision, 100); (4+sqrt(2)*log(3+2*sqrt(2)))/12 \\ G. C. Greubel, Oct 06 2018 (MAGMA) SetDefaultRealField(RealField(100)); (4+Sqrt(2)*Log(3 +2*Sqrt(2)))/12; // G. C. Greubel, Oct 06 2018 CROSSREFS Cf. A103712. Sequence in context: A129522 A133842 A199453 * A115637 A124602 A320060 Adjacent sequences:  A245696 A245697 A245698 * A245700 A245701 A245702 KEYWORD nonn,cons AUTHOR Derek Orr, Jul 29 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 10:45 EDT 2019. Contains 322255 sequences. (Running on oeis4.)