login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245699
Decimal expansion of the expected distance from a randomly selected point in a 45-45-90 degree triangle of base length 1 to the vertex of the right angle: (4+sqrt(2)*log(3+2*sqrt(2)))/12.
1
5, 4, 1, 0, 7, 5, 0, 8, 0, 0, 4, 6, 7, 4, 3, 5, 0, 4, 4, 6, 4, 6, 7, 3, 3, 6, 0, 0, 8, 3, 5, 2, 2, 6, 6, 7, 5, 5, 0, 2, 3, 1, 7, 7, 0, 7, 8, 2, 1, 8, 9, 0, 8, 4, 2, 9, 9, 5, 7, 1, 5, 9, 2, 0, 3, 2, 0, 5, 6, 6, 6, 8, 1, 8, 2, 3, 3, 8, 0, 6, 0, 1, 5, 5, 8, 8, 9, 6, 9, 1, 0, 7, 8, 5, 4, 2, 2, 0, 9, 3, 5, 6, 5, 2, 7, 8, 8, 4, 0, 3, 0, 4, 7, 4, 2, 3, 1, 8, 1, 4
OFFSET
0,1
FORMULA
Equals Integral_{y = 0..Pi/4; x = 0..1/(sqrt(2)*cos(y))} 4x^2 dx dy.
Equals Integral_{y = 0..Pi/4} (sqrt(2)/3)*sec^3(y) dy.
EXAMPLE
0.54107508004674350446467336008352266755023177078218908429957159203205...
MAPLE
evalf((4+sqrt(2)*log(3+2*sqrt(2)))/12, 100); # Muniru A Asiru, Oct 07 2018
MATHEMATICA
RealDigits[(4 + Sqrt[2]*Log[3 + 2*Sqrt[2]])/12, 10, 100][[1]] (* G. C. Greubel, Oct 06 2018 *)
PROG
(PARI) default(realprecision, 100); (4+sqrt(2)*log(3+2*sqrt(2)))/12 \\ G. C. Greubel, Oct 06 2018
(Magma) SetDefaultRealField(RealField(100)); (4+Sqrt(2)*Log(3 +2*Sqrt(2)))/12; // G. C. Greubel, Oct 06 2018
CROSSREFS
Cf. A103712.
Sequence in context: A129522 A133842 A199453 * A115637 A124602 A320060
KEYWORD
nonn,cons
AUTHOR
Derek Orr, Jul 29 2014
STATUS
approved