login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A138997 First differences of Frobenius numbers for 6 successive numbers A138986. 5
1, 1, 1, 1, 8, 2, 2, 2, 2, 14, 3, 3, 3, 3, 20, 4, 4, 4, 4, 26, 5, 5, 5, 5, 32, 6, 6, 6, 6, 38, 7, 7, 7, 7, 44, 8, 8, 8, 8, 50, 9, 9, 9, 9, 56, 10, 10, 10, 10, 62, 11, 11, 11, 11, 68, 12, 12, 12, 12, 74, 13, 13, 13, 13, 80, 14, 14, 14, 14, 86, 15, 15, 15, 15, 92, 16, 16, 16, 16, 98, 17, 17 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

For first differences of Frobenius numbers for 2 successive numbers see A005843

For first differences of Frobenius numbers for 3 successive numbers see A014682

For first differences of Frobenius numbers for 4 successive numbers see A138995

For first differences of Frobenius numbers for 5 successive numbers see A138996

For first differences of Frobenius numbers for 6 successive numbers see A138997

For first differences of Frobenius numbers for 7 successive numbers see A138998

For first differences of Frobenius numbers for 8 successive numbers see A138999

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,2,0,0,0,0,-1).

FORMULA

a(n) = A138986(n+1) - A138986(n).

O.g.f.= -(-1-x-x^2-x^3-8*x^4+2*x^9)/((x-1)^2*(x^4+x^3+x^2+x+1)^2). - R. J. Mathar, Apr 20 2008

a(n) = 2*a(n-5) - a(n-10). - R. J. Mathar, Apr 20 2008

a(n)= (1/5)*n*x(5+mod(n,5))-(1/5)*mod(n,5)*x(5+mod(n,5))+x(mod(n,5))-(1/5)*n*x(mod(n,5))+(1/5) *mod(n,5)*x(mod(n,5)). - Alexander R. Povolotsky, Apr 20 2008

MATHEMATICA

a = {}; Do[AppendTo[a, FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4, n + 5, n + 6}]], {n, 1, 100}]; Differences[a]

LinearRecurrence[{0, 0, 0, 0, 2, 0, 0, 0, 0, -1}, {1, 1, 1, 1, 8, 2,

  2, 2, 2, 14}, 50] (* G. C. Greubel, Feb 18 2017 *)

PROG

(PARI) x='x + O('x^50); Vec(-(-1-x-x^2-x^3-8*x^4+2*x^9)/((x-1)^2*(x^4+x^3+x^2+x+1)^2)) \\ G. C. Greubel, Feb 18 2017

CROSSREFS

Cf. A028387, A037165, A079326, A138985, A138986, A138987, A138988, A138989, A138990, A138991, A138992, A138993, A138994, A138995, A138996, A138997, A138998, A138999.

Sequence in context: A176153 A136711 A037920 * A248498 A133918 A072691

Adjacent sequences:  A138994 A138995 A138996 * A138998 A138999 A139000

KEYWORD

nonn

AUTHOR

Artur Jasinski, Apr 05 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 04:03 EDT 2021. Contains 346457 sequences. (Running on oeis4.)