login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

First differences of Frobenius numbers for 6 successive numbers A138986.
5

%I #8 Dec 18 2023 15:02:02

%S 1,1,1,1,8,2,2,2,2,14,3,3,3,3,20,4,4,4,4,26,5,5,5,5,32,6,6,6,6,38,7,7,

%T 7,7,44,8,8,8,8,50,9,9,9,9,56,10,10,10,10,62,11,11,11,11,68,12,12,12,

%U 12,74,13,13,13,13,80,14,14,14,14,86,15,15,15,15,92,16,16,16,16,98,17,17

%N First differences of Frobenius numbers for 6 successive numbers A138986.

%C For first differences of Frobenius numbers for 2 successive numbers see A005843

%C For first differences of Frobenius numbers for 3 successive numbers see A014682

%C For first differences of Frobenius numbers for 4 successive numbers see A138995

%C For first differences of Frobenius numbers for 5 successive numbers see A138996

%C For first differences of Frobenius numbers for 6 successive numbers see A138997

%C For first differences of Frobenius numbers for 7 successive numbers see A138998

%C For first differences of Frobenius numbers for 8 successive numbers see A138999

%H G. C. Greubel, <a href="/A138997/b138997.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,2,0,0,0,0,-1).

%F a(n) = A138986(n+1) - A138986(n).

%F O.g.f.= -(-1-x-x^2-x^3-8*x^4+2*x^9)/((x-1)^2*(x^4+x^3+x^2+x+1)^2). - R. J. Mathar, Apr 20 2008

%F a(n) = 2*a(n-5) - a(n-10). - R. J. Mathar, Apr 20 2008

%F a(n)= (1/5)*n*x(5+mod(n,5))-(1/5)*mod(n,5)*x(5+mod(n,5))+x(mod(n,5))-(1/5)*n*x(mod(n,5))+(1/5) *mod(n,5)*x(mod(n,5)). - _Alexander R. Povolotsky_, Apr 20 2008

%t a = {}; Do[AppendTo[a, FrobeniusNumber[{n + 1, n + 2, n + 3, n + 4, n + 5, n + 6}]], {n, 1, 100}]; Differences[a]

%t LinearRecurrence[{0, 0, 0, 0, 2, 0, 0, 0, 0, -1}, {1, 1, 1, 1, 8, 2,

%t 2, 2, 2, 14}, 50] (* _G. C. Greubel_, Feb 18 2017 *)

%t Differences[Table[FrobeniusNumber[Range[n,n+5]],{n,2,90}]] (* _Harvey P. Dale_, Dec 18 2023 *)

%o (PARI) x='x + O('x^50); Vec(-(-1-x-x^2-x^3-8*x^4+2*x^9)/((x-1)^2*(x^4+x^3+x^2+x+1)^2)) \\ _G. C. Greubel_, Feb 18 2017

%Y Cf. A028387, A037165, A079326, A138985, A138986, A138987, A138988, A138989, A138990, A138991, A138992, A138993, A138994, A138995, A138996, A138997, A138998, A138999.

%K nonn

%O 1,5

%A _Artur Jasinski_, Apr 05 2008