login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139000
a(n) = discriminant of n-th Bell polynomial.
0
0, 1, 1, 5, 257, 227081, 5180893281, 4280906663314189, 171185545597850136406017, 426885502327596067385688208587793, 83152665259106642682190066734067859360190625, 1549180370826247785860196691818235616463808908569519107349
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
EXAMPLE
a(4) = 257 because discriminant of the 4th Bell polynomial x + 7 x^2 + 6 x^3 + x^4 is 257.
MAPLE
seq(discrim(BellB(n, x), x), n = 0..12); # Peter Luschny, Oct 08 2023
MATHEMATICA
Table[Discriminant[BellB[n, x], x], {n, 0, 10}] (* Vaclav Kotesovec, Oct 08 2023 *)
PROG
(PARI) a(n) = poldisc(Pol(vector(n+1, k, stirling(n, k, 2)))); \\ Michel Marcus, Oct 07 2023
CROSSREFS
Cf. A106800.
Sequence in context: A055386 A216849 A201606 * A061959 A002554 A003383
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 05 2008
EXTENSIONS
Offset set to 0 by Peter Luschny, Oct 08 2023
STATUS
approved