OFFSET
0,4
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..5150 (rows n = 0..100,flattened)
P. De Geest, Palindromic Quasipronics of the form n(n+x)
FORMULA
G.f.: x*(1+x-2*x^2*y)/((1-x*y)^2*(1-x)^3). - Vladeta Jovovic, Mar 05 2004
EXAMPLE
Table begins
0;
1, 0;
4, 2, 0;
9, 6, 3, 0;
16, 12, 8, 4, 0;
25, 20, 15, 10, 5, 0;
36, 30, 24, 18, 12, 6, 0;
...
a(5,3) = 40 because 5 * (5 + 3) = 5 * 8 = 40.
MAPLE
seq(seq((j-i)*j, i=0..j), j=0..14);
MATHEMATICA
Table[# (# + k) &[m - k], {m, 0, 11}, {k, 0, m}] // Flatten (* Michael De Vlieger, Oct 15 2018 *)
PROG
(GAP) Flat(List([0..11], j->List([0..j], i->j*(j-i)))); # Muniru A Asiru, Sep 11 2018
CROSSREFS
Columns: a(n, 0) = A000290(n), a(n, 1) = A002378(n), a(n, 2) = A005563(n), a(n, 3) = A028552(n), a(n, 4) = A028347(n+2), a(n, 5) = A028557(n), a(n, 6) = A028560(n), a(n, 7) = A028563(n), a(n, 8) = A028566(n). Diagonals: a(n, n-4) = A054000(n-1), a(n, n-3) = A014107(n), a(n, n-2) = A046092(n-1), a(n, n-1) = A000384(n), a(n, n) = A001105(n), a(n, n+1) = A014105(n), a(n, n+2) = A046092(n), a(n, n+3) = A014106(n), a(n, n+4) = A054000(n+1), a(n, n+5) = A033537(n). Also note that the sums of the antidiagonals = A002411.
KEYWORD
AUTHOR
Ross La Haye, Mar 02 2004
EXTENSIONS
More terms from Emeric Deutsch, Mar 15 2004
STATUS
approved