login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091438
Triangle a(n,k) of partitions of n objects of 2 colors, k of which are black and each part with at least one black object.
3
1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 6, 7, 7, 1, 4, 8, 12, 12, 11, 1, 4, 10, 16, 21, 19, 15, 1, 5, 12, 23, 31, 36, 30, 22, 1, 5, 15, 28, 45, 55, 58, 45, 30, 1, 6, 17, 37, 60, 84, 94, 92, 67, 42, 1, 6, 20, 44, 80, 115, 147, 153, 140, 97, 56, 1, 7, 23, 55, 101, 161, 211, 249, 244, 211, 139, 77
OFFSET
1,3
COMMENTS
Number of ways to factor p^(n-k)*q^k where p and q are distinct primes and each factor is a multiple of q.
LINKS
FORMULA
G.f.: A(x,y) = Product_{i>=1, j=1..i} (1/(1-x^i*y^j)).
EXAMPLE
1;
1, 2;
1, 2, 3;
1, 3, 4, 5;
1, 3, 6, 7, 7; ...
MAPLE
b:= proc(n, i, j, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
`if`(i<1 or k<1, 0, `if`(j<1, b(n, i-1, i-1, k),
b(n, i, j-1, k)+`if`(i>n or j>k, 0, b(n-i, i, j, k-j)))))
end:
a:= (n, k)-> b(n$2, k$2):
seq(seq(a(n, k), k=1..n), n=1..15); # Alois P. Heinz, Mar 14 2015
MATHEMATICA
b[n_, i_, j_, k_] := b[n, i, j, k] = If[n == 0, If[k == 0, 1, 0], If[i < 1 || k < 1, 0, If[j < 1, b[n, i - 1, i - 1, k], b[n, i, j - 1, k] + If[i > n || j > k, 0, b[n - i, i, j, k - j]]]]]; a[n_, k_] := b[n, n, k, k]; Table[a[n, k], {n, 1, 15}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 10 2016, after Alois P. Heinz *)
CROSSREFS
Row sums: A000219.
Main diagonal: A000041.
a(2n,n) gives A108457.
Cf. A054225.
Sequence in context: A215520 A026820 A330661 * A011794 A221640 A073300
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved