OFFSET
1,2
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 114 (2.4.42).
LINKS
Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
FORMULA
Double e.g.f.: A(x, y) = Sum_{i, j>=0} (x^i*y^j/(i!*j!)) = (1-x)*(1-y)/(1-x-y).
T(n,k) = k * T(n-1,k-1) + (n-k+1) * T(n-1,k), T(1,1) = 1. - Reinhard Zumkeller, May 07 2013
EXAMPLE
1, 2, 6, 24, 120; ...
2, 8, 36, 192, 1200; ...
6, 36, 216, 1440, 10800; ...
24, 192, 1440, 11520, 100800; ...
120, 1200, 10800, 100800, 1008000; ...
PROG
(Haskell)
import Data.List (genericLength)
a091441 n k = a091441_tabl !! (n-1) !! (k-1)
a091441_row n = a091441_tabl !! (n-1)
a091441_tabl = iterate f [1] where
f xs = zipWith (+)
(zipWith (*) ([0] ++ xs) ks) (zipWith (*) (xs ++ [0]) (reverse ks))
where ks = [1 .. 1 + genericLength xs]
-- Reinhard Zumkeller, May 07 2013
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Jan 09 2004
STATUS
approved