login
A091441
Table (by antidiagonals) of permutations of two types of objects such that each cycle contains at least one object of each type. Each type of object is labeled from its own label set.
2
1, 2, 2, 6, 8, 6, 24, 36, 36, 24, 120, 192, 216, 192, 120, 720, 1200, 1440, 1440, 1200, 720, 5040, 8640, 10800, 11520, 10800, 8640, 5040, 40320, 70560, 90720, 100800, 100800, 90720, 70560, 40320, 362880, 645120, 846720, 967680, 1008000, 967680
OFFSET
1,2
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 114 (2.4.42).
LINKS
FORMULA
Double e.g.f.: A(x, y) = Sum_{i, j>=0} (x^i*y^j/(i!*j!)) = (1-x)*(1-y)/(1-x-y).
T(n,k) = k * T(n-1,k-1) + (n-k+1) * T(n-1,k), T(1,1) = 1. - Reinhard Zumkeller, May 07 2013
EXAMPLE
1, 2, 6, 24, 120; ...
2, 8, 36, 192, 1200; ...
6, 36, 216, 1440, 10800; ...
24, 192, 1440, 11520, 100800; ...
120, 1200, 10800, 100800, 1008000; ...
PROG
(Haskell)
import Data.List (genericLength)
a091441 n k = a091441_tabl !! (n-1) !! (k-1)
a091441_row n = a091441_tabl !! (n-1)
a091441_tabl = iterate f [1] where
f xs = zipWith (+)
(zipWith (*) ([0] ++ xs) ks) (zipWith (*) (xs ++ [0]) (reverse ks))
where ks = [1 .. 1 + genericLength xs]
-- Reinhard Zumkeller, May 07 2013
CROSSREFS
Cf. A008292.
Sequence in context: A231131 A142243 A269722 * A269565 A334518 A099490
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Jan 09 2004
STATUS
approved