Displaying 1-10 of 429 results found.
page
1
2
3
4
5
6
7
8
9
10
... 43
a(n) = 3a(n-1) + 3a(n-2). a(0) = 1, a(1) = 4.
+0
24
1, 4, 15, 57, 216, 819, 3105, 11772, 44631, 169209, 641520, 2432187, 9221121, 34959924, 132543135, 502509177, 1905156936, 7222998339, 27384465825, 103822392492, 393620574951, 1492328902329, 5657848431840, 21450532002507
COMMENTS
Number of aa-avoiding words of length n on the alphabet {a,b,c,d}.
This array is one of a family related by compositions of C(x)= [1-sqrt(1-4x)]/2, an o.g.f. for A000108; its inverse Cinv(x) = x(1-x); and the special Mobius transformation P(x,t) = x / (1+t*x) with inverse P(x,-t) in x. Cf. A091867.
O.g.f.: G(x) = P[P[P[-Cinv(-x),-1],-1],-1] = P[-Cinv(-x),-3] = x*(1+x)/[1-3x(1-x)]= x* A125145(x).
Ginv(x) = -C[-P(x,3)] = [-1 + sqrt(1+4x/(1+3x))]/2 = x* A104455(-x).
G(-x) = -x(1-x) * [ 1 - 3*[x*(1+x)] + 3^2*[x*(1+x)]^2 - ...] , and so this array is related to finite differences in the row sums of A030528 * Diag((-3)^1,3^2,(-3)^3,..). (Cf. A146559.)
The inverse of -G(-x) is C[-P(-x,3)]= [1 - sqrt(1-4x/(1-3x))]/2 = x* A104455(x). (End)
Number of 3-compositions of n+1 restricted to parts 1 and 2 (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 16 2020
FORMULA
a(n) = (5*sqrt(21)/42 + 1/2)*(3/2 + sqrt(21)/2)^n + (-5*sqrt(21)/42 + 1/2)*(3/2 - sqrt(21)/2)^n. - Antonio Alberto Olivares, Mar 20 2008
E.g.f.: exp(3*x/2)*(21*cosh(sqrt(21)*x/2) + 5*sqrt(21)*sinh(sqrt(21)*x/2))/21. - Stefano Spezia, Aug 04 2022
MAPLE
a[0]:=1: a[1]:=4: for n from 2 to 27 do a[n]:=3*a[n-1]+3*a[n-2] od: seq(a[n], n=0..27); # Emeric Deutsch, Feb 27 2007
option remember;
if n <= 1 then
op(n+1, [1, 4]) ;
else
3*(procname(n-1)+procname(n-2)) ;
end if;
MATHEMATICA
nn=23; CoefficientList[Series[(1+x)/(1-3x-3x^2), {x, 0, nn}], x] (* Geoffrey Critzer, Feb 09 2014 *)
LinearRecurrence[{3, 3}, {1, 4}, 30] (* Harvey P. Dale, May 01 2022 *)
PROG
(Haskell)
a125145 n = a125145_list !! n
a125145_list =
1 : 4 : map (* 3) (zipWith (+) a125145_list (tail a125145_list))
(Magma) I:=[1, 4]; [n le 2 select I[n] else 3*Self(n-1)+3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Nov 10 2014
CROSSREFS
Cf. A028859 = a(n+2) = 2 a(n+1) + 2 a(n); A086347 = On a 3 X 3 board, number of n-move routes of chess king ending at a given side cell. a(n) = 4a(n-1) + 4a(n-2).
AUTHOR
_Tanya Khovanova_, Jan 11 2007
Sums of two distinct prime cubes.
+0
18
35, 133, 152, 351, 370, 468, 1339, 1358, 1456, 1674, 2205, 2224, 2322, 2540, 3528, 4921, 4940, 5038, 5256, 6244, 6867, 6886, 6984, 7110, 7202, 8190, 9056, 11772, 12175, 12194, 12292, 12510, 13498, 14364, 17080, 19026, 24397, 24416, 24514
COMMENTS
If an element of this sequence is odd, it must be of the form a(n)=8+p^3, else it is a(n)=p^3+q^3 with two primes p>q>2. - M. F. Hasler, Apr 13 2008
EXAMPLE
2^3+3^3=35=a(1), 2^3+5^3=133=a(2), 3^3+5^3=152=a(3), 2^3+7^3=351=a(4).
MATHEMATICA
Select[Sort[ Flatten[Table[Prime[n]^3 + Prime[k]^3, {n, 15}, {k, n - 1}]]], # <= Prime[15^3] &]
PROG
(PARI) isA030078(n)=n==round(sqrtn(n, 3))^3 && isprime(round(sqrtn(n, 3))) \\ M. F. Hasler, Apr 13 2008
(PARI) isA120398(n)={ n%2 & return(isA030078(n-8)); n<35 & return; forprime( p=ceil( sqrtn( n\2+1, 3)), sqrtn(n-26.5, 3), isA030078(n-p^3) & return(1))} \\ M. F. Hasler, Apr 13 2008
(PARI) for( n=1, 10^6, isA120398(n) & print1(n", ")) \\ - M. F. Hasler, Apr 13 2008
(PARI) list(lim)=my(v=List()); lim\=1; forprime(q=3, sqrtnint(lim-8, 3), my(q3=q^3); forprime(p=2, min(sqrtnint(lim-q3, 3), q-1), listput(v, p^3+q3))); Set(v) \\ Charles R Greathouse IV, Mar 31 2022
AUTHOR
_Tanya Khovanova_, Jul 24 2007
3, 5, 9, 15, 17, 23, 27, 29, 33, 39, 43, 45, 51, 53, 57, 63, 65, 71, 75, 77, 83, 85, 89, 95, 99, 101, 105, 111, 113, 119, 123, 125, 129, 135, 139, 141, 147, 149, 153, 159, 163, 165, 169, 175, 177, 183, 187, 189, 195, 197, 201, 207, 209, 215, 219, 221, 225, 231, 235
COMMENTS
A heuristic argument suggests that, as n tends to infinity, a(n)/n converges to 4. - Stefan Steinerberger, May 17 2007
These numbers may be called primitive evil numbers because every evil number is a power of 2 multiplied by one of these numbers. Note that the difference between consecutive terms is either 2, 4, or 6. - T. D. Noe, Jun 06 2007
If m is in the sequence, then so is 2m-1 because in binary, m is x1 and 2m-1 is x01. Presumably the numbers that generate the whole sequence by application of n -> 2n-1 are the evil numbers times 4 plus 3. - Ralf Stephan, May 25 2013
FORMULA
a(n) = 2* A000069(n) + 1. a(n) is 1 plus twice odious numbers. a(n) = A128309(n) + 1. a(n) is 1 plus odious even numbers.
MATHEMATICA
Select[Range[300], OddQ[ # ] && EvenQ[DigitCount[ #, 2, 1]] &] (* Stefan Steinerberger, May 17 2007 *)
Select[Range[300], EvenQ[Plus @@ IntegerDigits[ #, 2]] && OddQ[ # ] &]
PROG
(Python)
def A129771(n): return (((m:=n-1)<<1)+(m.bit_count()&1^1)<<1)+1 # Chai Wah Wu, Mar 09 2023
CROSSREFS
This sequence is the intersection of A001969 (Evil numbers: even number of 1's in binary expansion.) and A005408 (The odd numbers: a(n) = 2n+1.) A093688 (Numbers n such that all divisors of n, excluding the divisor 1, have an even number of 1's in their binary expansions) is a subsequence.
AUTHOR
_Tanya Khovanova_, May 16 2007
Aspiring numbers: numbers whose aliquot sequence terminates in a perfect number.
+0
16
25, 95, 119, 143, 417, 445, 565, 608, 650, 652, 675, 685, 783, 790, 909, 913
COMMENTS
There are many numbers whose aliquot sequences have not yet been completely computed, so this sequence is not fully known. In particular, 276 may, perhaps, be an element of this sequence, although this is very unlikely.
Numbers less than 1000 whose aliquot sequence is not known that could possibly be in this sequence are: 276, 306, 396, 552, 564, 660, 696, 780, 828, 888, 966, 996. - Robert Price, Jun 03 2013
REFERENCES
No number terminates at 28, the second perfect number.
EXAMPLE
The divisors of 95 less than itself are 1, 5 and 19. They sum to 25. The divisors of 25 less than itself are 1 and 5. They sum to 6, which is perfect.
MATHEMATICA
perfectQ[n_] := DivisorSigma[1, n] == 2*n; maxAliquot = 10^45; A131884 = {}; s[1] = 1; s[n_] := DivisorSigma[1, n] - n; selQ[n_ /; n <= 5] = False; selQ[n_] := NestWhile[s, n, If[{##}[[-1]] > maxAliquot, Print[" A131884: ", n]; AppendTo[ A131884, n]; False, Length[{##}] < 4 || {##}[[-4 ;; -3]] != {##}[[-2 ;; -1]]] &, All] // perfectQ; Reap[For[k = 1, k < 1000, k++, If[! perfectQ[k] && selQ[k], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Nov 15 2013 *)
AUTHOR
_Tanya Khovanova_ and Alexey Radul, Aug 14 2001
Number of different equations that can be made by summing numbers from 1 to n and using every number not more than once.
+0
16
0, 0, 1, 3, 7, 17, 43, 108, 273, 708, 1867, 4955, 13256, 35790, 97340, 266240, 732014, 2022558, 5612579, 15634288, 43702232, 122550885, 344661924, 971908613, 2747404212, 7784038617, 22100387619, 62869809733, 179173559128, 511497066733, 1462522478549, 4188024794407
COMMENTS
The summands of each side are in increasing order and the minimum of all summands is on the left side.
EXAMPLE
a(3) = 1, as the only equation we can make by summing numbers from the set {1, 2, 3} is 1+2=3. a(4) = 3, as we can make three equations: 1+2=3, 1+3=4, 1+4=2+3.
MAPLE
b:= proc(n, i) option remember; local m; m:= i*(i+1)/2;
if n>m then 0
elif n=m then 1
else b(n, i-1) +b(abs(n-i), i-1) +b(n+i, i-1)
fi
end:
a:= proc(n) option remember;
`if`(n>2, b(n, n-1)+ a(n-1), 0)
end:
seq(a(n), n=1..40); # Alois P. Heinz, Aug 31 2009, revised Sep 16 2011
MATHEMATICA
Table[(Length[ Select[Range[0, 3^n - 1], Apply[Plus, Pick[Range[n], PadLeft[IntegerDigits[ #, 3], n], 1]] == Apply[Plus, Pick[Range[n], PadLeft[IntegerDigits[ #, 3], n], 2]] &]] - 1)/ 2, {n, 14}]
AUTHOR
_Tanya Khovanova_, Jun 22 2009
11, 1093, 1093, 3511, 3511, 5557, 104891, 1006003
COMMENTS
All terms are primes. Note a connection to the Wieferich primes A001220: a(2) = a(3) = A001220(1), a(3) = a(4) = A001220(2).
All Wieferich primes p will belong to this sequence twice, because if H([p/k]) denotes the harmonic number with index floor(p/k), then p divides all of H([p/4]), H([p/2]), and H(p-1). The first two of these elements gives one solution, and the second and third another. This property of the Wieferich primes predates their name, and was apparently first proved by Glaisher in "On the residues of r^(p-1) to modulus p^2, p^3, etc.," pp. 21-22, 23 (see References).
Note also a connection to the Mirimanoff primes A014127: a(1) = A014127(1), a(8) = A014127(2). All Mirimanoff primes p will belong to this sequence, because p divides both H([p/3]) and H([2p/3]). This property of the Mirimanoff primes likewise predates their name, and was apparently first proved by Glaisher in "A general congruence theorem relating to the Bernoullian function," p. 50 (see Links).
The Wieferich primes and Mirimanoff primes would seem to be the only cases for which the value of n in A126196(n) is predictable from knowledge of p. It is not obvious that all members of the present sequence are prime; however, by definition all their divisors must be non-harmonic primes A092102. Furthermore, it is clear from the cited literature under that entry that H([n/2]) == H(n) == 0 (mod p) is only possible when n < p. Thus, all divisors of the present sequence must belong to the harmonic irregular primes A092194.
One possible reason for interest in this sequence is a 1995 result of Dilcher and Skula (see Links) which among other things shows that if a prime p were an exception to the first case of Fermat's Last Theorem, then p would divide both H([p/k]) and H([2p/k]) for every value of k from 2 to 46. To date, the only values for which such coincidences have been found have k = 2, 3, or 4. For k = 6 to hold, p would have to be simultaneously a Wieferich prime and a Mirimanoff prime, while for k = 5 to hold, p would have to be simultaneously a Wall-Sun-Sun prime and a member of A123692. The sparse numerical results for the present sequence suggest that even the more relaxed condition H([n/2]) == H(n) == 0 (mod p) is rarely satisfied. (End)
REFERENCES
J. W. L. Glaisher, On the residues of r^(p-1) to modulus p^2, p^3, etc., Quarterly Journal of Pure and Applied Mathematics 32 (1900-1901), 1-27.
MATHEMATICA
f[n_] := GCD @@ Numerator@ HarmonicNumber@ {n, Floor[n/2]}; f@ Select[ Range[5000], f[#] > 1 &] (* Giovanni Resta, May 13 2016 *)
7, 546, 1092, 1755, 3510, 4896, 52447, 670668
MATHEMATICA
Select[Range[5000], GCD @@ Numerator@ HarmonicNumber@{#, Floor[#/2]} > 1 &] (* Giovanni Resta, May 13 2016 *)
PROG
(PARI) a001008(n)=numerator(sum(i=1, n, 1/i))
for(n=1, 1e6, if(gcd(a001008(n), a001008(n/2)) > 1, print1(n, ", "))) \\ Felix Fröhlich, Aug 08 2014
CROSSREFS
The corresponding GCDs are given by A126197.
AUTHOR
Max Alekseyev and _Tanya Khovanova_, Mar 07 2007, corrected Mar 10 2007
a(n) = R(f(n)), where R = A004086 = reverse (decimal) digits, f = A071786 = reverse digits of prime factors.
+0
12
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 21, 13, 41, 51, 61, 17, 81, 19, 2, 12, 22, 23, 42, 52, 26, 72, 82, 29, 3, 31, 23, 33, 241, 53, 63, 37, 281, 39, 4, 41, 24, 43, 44, 54, 46, 47, 84, 94, 5, 312, 421, 53, 45, 55, 65, 372, 481, 59, 6, 61, 62, 36, 46, 551, 66, 67, 482, 69, 7, 71, 27
COMMENTS
Might be called TITO(n), turning n inside out then turning outside in.
Here is the operation: take a number n and find its prime factors. Reverse the digits of every prime factor (for example, replace 17 by 71). Multiply the factors respecting multiplicities. For example, if the original number was 17^2*43^3, the new product will be 71^2*34^3. After that, reverse the resulting number.
FORMULA
a(p) = p, for prime p.
a( p*10^k ) = p for any prime p.
Proof: if gcd( p, 2*5) = 1, then a( p * 10^k ) = R( R(p) * R(2)^k * R(5)^k ) = R( R(p) * 10^k ) = R(R(p)) = p;
if gcd(p, 2*5) = 2, then p=2 and a( p * 10^k ) = R( R(2)^(k+1) * R(5)^k ) = R( 2 * 10^k ) = 2 = p and mutatis mutandis for gcd(p, 2*5) = 5. (End)
EXAMPLE
a(34) = 241, because 34 = 2*17, f(34) = 2*71 = 142, and reversing gives 241.
MAPLE
read("transforms") ; A071786 := proc(n) local ifs, a, d ; ifs := ifactors(n)[2] ; a := 1 ; for d in ifs do a := a*digrev(op(1, d))^op(2, d) ; od: a ; end: A161594 := proc(n) digrev( A071786(n)) ; end: seq( A161594(n), n=1..80) ; # R. J. Mathar, Jun 16 2009
# second Maple program:
r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n):
a:= n-> r(mul(r(i[1])^i[2], i=ifactors(n)[2])):
MATHEMATICA
reversepower[{n_, k_}] := FromDigits[Reverse[IntegerDigits[n]]]^k f[n_] := FromDigits[ Reverse[IntegerDigits[Times @@ Map[reversepower, FactorInteger[n]]]]] Table[f[n], {n, 100}]
Table[IntegerReverse[Times@@Flatten[Table[IntegerReverse[#[[1]]], #[[2]]]& /@FactorInteger[n]]], {n, 100}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 21 2016 *)
PROG
(Python)
from math import prod
from sympy import factorint
def f(n): return prod(int(str(p)[::-1])**e for p, e in factorint(n).items())
def R(n): return int(str(n)[::-1])
def a(n): return 1 if n == 1 else R(f(n))
a(n) is the total sum of the digits of n-digit primes.
+0
11
17, 197, 2041, 19879, 195226, 1920513, 18980518, 188098738, 1867197599, 18562452601, 184727304713, 1839816627645, 18335212785129, 182813489520604
MATHEMATICA
Table[Plus @@ Flatten[IntegerDigits[Select[Range[10^(n - 1), 10^n], PrimeQ[ # ] &]]], {n, 7}]
PROG
(PARI) A007953(n)={ local(a=0, shft=n) ; while(shft!=0, a += shft %10 ; shft \= 10 ; ) ; return(a) ; }
A130817(n)={ local(a=0) ; forprime(p=10^(n-1), 10^n, a += A007953(p) ; ) ; return(a) ; }
AUTHOR
_Tanya Khovanova_, Jul 16 2007
Numbers where any two consecutive decimal digits differ by 1 after arranging the digits in decreasing order.
+0
11
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 21, 23, 32, 34, 43, 45, 54, 56, 65, 67, 76, 78, 87, 89, 98, 102, 120, 123, 132, 201, 210, 213, 231, 234, 243, 312, 321, 324, 342, 345, 354, 423, 432, 435, 453, 456, 465, 534, 543, 546, 564, 567, 576, 645, 654, 657, 675, 678, 687, 756, 765, 768, 786, 789, 798, 867
COMMENTS
a(4091131) = 9876543210 is the last term.
Also 0 together with positive integers having k distinct digits and the difference between the largest and the smallest digit equal to k-1. - David A. Corneth, Dec 26 2017
FORMULA
If zero is excluded, the number of terms with k digits, 1 <= k <= 10, is (11-k)*k! - (k-1)!. - Franklin T. Adams-Watters, Aug 01 2012
MATHEMATICA
lst = {}; Do[If[Times @@ Differences@Sort@IntegerDigits[n] == 1, AppendTo[lst, n]], {n, 0, 675}]; lst (* Arkadiusz Wesolowski, Aug 01 2012 *)
Join[Range[0, 9], Select[Range[1000], Union[Differences[Sort[ IntegerDigits[ #]]]] == {1}&]] (* Harvey P. Dale, Jan 14 2015 *)
PROG
(PARI) is(n)=my(v=vecsort(eval(Vec(Str(n))))); for(i=2, #v, if(v[i]!=1+v[i-1], return(0))); 1
(PARI) is(n) = if(!n, return(1)); my(d = digits(n), v = vecsort(d, , 8)); #d == #v && v[#v] - v[1] == #v - 1
(Python)
def consecutive(li):
for i in range(len(li)-1):
if(li[i+1]!=1+li[i]): return False
return True
def sorted_digits(n):
lst=[]
while(n>0):
lst+=[n%10] ; n//=10
lst.sort() ; return lst
j=0
for i in range(1, 10001):
while(not consecutive(sorted_digits(j))): j+=1
print(str(i)+" "+str(j)) ; j+=1
(Python) # alternate for generating full sequence in seconds
from itertools import permutations as perms
frags = ["0123456789"[i:j] for i in range(10) for j in range(i+1, 11)]
afull = sorted(set(int("".join(s)) for f in frags for s in perms(f)))
Search completed in 0.150 seconds
|