login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378066
Array read by ascending antidiagonals: A(n, k) = (-2*n)^k * Euler(k, (n - 1)/(2*n)) for n >= 1 and A(0, k) = 1.
3
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -3, -2, 1, 1, 1, -8, -11, 0, 1, 1, 1, -15, -26, 57, 16, 1, 1, 1, -24, -47, 352, 361, 0, 1, 1, 1, -35, -74, 1185, 1936, -2763, -272, 1, 1, 1, -48, -107, 2976, 6241, -38528, -24611, 0, 1
OFFSET
0,13
COMMENTS
This is the counterpart of A377666, where A(1, n) are the secant numbers A122045(n). Here A(1, n) are the tangent numbers A155585(n).
FORMULA
A(n, k) = k! * [x^k] exp(x)/cosh(n*x).
A(n, k) = Sum_{j = 0..k} binomial(k, j) * Euler(j, 1/2) *(-2*n)^j.
EXAMPLE
Array starts:
[0] 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 1, 0, -2, 0, 16, 0, ... A155585
[2] 1, 1, -3, -11, 57, 361, -2763, ... A188458
[3] 1, 1, -8, -26, 352, 1936, -38528, ... A000810
[4] 1, 1, -15, -47, 1185, 6241, -230895, ... A000813
[5] 1, 1, -24, -74, 2976, 15376, -906624, ... A378065
[6] 1, 1, -35, -107, 6265, 32041, -2749355, ...
[7] 1, 1, -48, -146, 11712, 59536, -6997248, ...
MAPLE
A := (n, k) -> ifelse(n = 0, 1, (-2*n)^k * euler(k, (n - 1) / (2*n))):
for n from 0 to 7 do seq(A(n, k), k = 0..9) od; # row by row
# Alternative:
A := proc(n, k) local j; add(binomial(k, j)*euler(j, 1/2)*(-2*n)^j, j = 0..k) end: seq(seq(A(n - k, k), k = 0..n), n = 0..10);
# Using generating functions:
egf := n -> exp(x)/cosh(n*x): ser := n -> series(egf(n), x, 14):
row := n -> local k; seq(k!*coeff(ser(n), x, k), k = 0..7):
seq(lprint(row(n)), n = 0..7);
CROSSREFS
Columns: A005563 (k=2), A080663 (k=3), A378064 (k=4).
Cf. A378063 (main diagonal), A377666 (secant), A081658 (column generating polynomials).
Sequence in context: A140736 A284993 A292068 * A350942 A140056 A240239
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Nov 15 2024
STATUS
approved