login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378064
a(n) = 5*n^4 - 6*n^2 + 1. Column 4 of A378066.
2
1, 0, 57, 352, 1185, 2976, 6265, 11712, 20097, 32320, 49401, 72480, 102817, 141792, 190905, 251776, 326145, 415872, 522937, 649440, 797601, 969760, 1168377, 1396032, 1655425, 1949376, 2280825, 2652832, 3068577, 3531360, 4044601, 4611840, 5236737, 5923072
OFFSET
0,3
FORMULA
a(n) = [x^n] (-57*x^3 - 67*x^2 + 5*x - 1)/(x - 1)^5.
MAPLE
seq(5*n^4 - 6*n^2 + 1, n = 0..33);
PROG
(Python)
def A378064(n): return (m:=n**2)*(5*m-6)+1 # Chai Wah Wu, Nov 18 2024
CROSSREFS
Cf. A378066.
Sequence in context: A371515 A043399 A038482 * A209517 A097200 A211147
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 17 2024
STATUS
approved