Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Nov 19 2024 00:51:28
%S 1,0,57,352,1185,2976,6265,11712,20097,32320,49401,72480,102817,
%T 141792,190905,251776,326145,415872,522937,649440,797601,969760,
%U 1168377,1396032,1655425,1949376,2280825,2652832,3068577,3531360,4044601,4611840,5236737,5923072
%N a(n) = 5*n^4 - 6*n^2 + 1. Column 4 of A378066.
%F a(n) = [x^n] (-57*x^3 - 67*x^2 + 5*x - 1)/(x - 1)^5.
%p seq(5*n^4 - 6*n^2 + 1, n = 0..33);
%o (Python)
%o def A378064(n): return (m:=n**2)*(5*m-6)+1 # _Chai Wah Wu_, Nov 18 2024
%Y Cf. A378066.
%K nonn
%O 0,3
%A _Peter Luschny_, Nov 17 2024