login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378068
Table read by row: T(n, k) = Sum_{j=0..k} A217831(n, j). Partial row sums of Euclid's triangle.
1
0, 1, 2, 0, 1, 1, 0, 1, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2, 3, 4, 4, 0, 1, 1, 1, 1, 2, 2, 0, 1, 2, 3, 4, 5, 6, 6, 0, 1, 1, 2, 2, 3, 3, 4, 4, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4
OFFSET
0,3
FORMULA
Prepending [0, 3] and setting offset = 0 sequence A092790 becomes the row sums.
EXAMPLE
Triangle starts:
[0] [0]
[1] [1, 2]
[2] [0, 1, 1]
[3] [0, 1, 2, 2]
[4] [0, 1, 1, 2, 2]
[5] [0, 1, 2, 3, 4, 4]
[6] [0, 1, 1, 1, 1, 2, 2]
[7] [0, 1, 2, 3, 4, 5, 6, 6]
[8] [0, 1, 1, 2, 2, 3, 3, 4, 4]
[9] [0, 1, 2, 2, 3, 4, 4, 5, 6, 6]
[10] [0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4]
MAPLE
aRow := n -> local k; ListTools:-PartialSums([seq(if NumberTheory:-AreCoprime(n, k) then 1 else 0 fi, k = 0..n)]): seq(print(aRow(n)), n = 0..10);
MATHEMATICA
aRow[n_] := Accumulate[Table[If[CoprimeQ[n, k], 1, 0], {k, 0, n}]];
Table[aRow[n], {n, 0, 10}] // Flatten
CROSSREFS
Cf. A000010 (subdiagonal), A217831 (Euclid's triangle), A092790 (row sums)
Sequence in context: A101672 A083731 A374058 * A216266 A177416 A087606
KEYWORD
nonn,tabl,new
AUTHOR
Peter Luschny, Dec 26 2024
STATUS
approved