login
A378068
Table read by row: T(n, k) = Sum_{j=0..k} A217831(n, j). Partial row sums of Euclid's triangle.
1
0, 1, 2, 0, 1, 1, 0, 1, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2, 3, 4, 4, 0, 1, 1, 1, 1, 2, 2, 0, 1, 2, 3, 4, 5, 6, 6, 0, 1, 1, 2, 2, 3, 3, 4, 4, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4
OFFSET
0,3
FORMULA
Prepending [0, 3] and setting offset = 0 sequence A092790 becomes the row sums.
EXAMPLE
Triangle starts:
[0] [0]
[1] [1, 2]
[2] [0, 1, 1]
[3] [0, 1, 2, 2]
[4] [0, 1, 1, 2, 2]
[5] [0, 1, 2, 3, 4, 4]
[6] [0, 1, 1, 1, 1, 2, 2]
[7] [0, 1, 2, 3, 4, 5, 6, 6]
[8] [0, 1, 1, 2, 2, 3, 3, 4, 4]
[9] [0, 1, 2, 2, 3, 4, 4, 5, 6, 6]
[10] [0, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4]
MAPLE
aRow := n -> local k; ListTools:-PartialSums([seq(if NumberTheory:-AreCoprime(n, k) then 1 else 0 fi, k = 0..n)]): seq(print(aRow(n)), n = 0..10);
MATHEMATICA
aRow[n_] := Accumulate[Table[If[CoprimeQ[n, k], 1, 0], {k, 0, n}]];
Table[aRow[n], {n, 0, 10}] // Flatten
CROSSREFS
Cf. A000010 (subdiagonal), A217831 (Euclid's triangle), A092790 (row sums)
Sequence in context: A101672 A083731 A374058 * A216266 A177416 A087606
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Dec 26 2024
STATUS
approved