The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292068 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 + j^k*x^j). 1
 1, 1, -1, 1, -1, 0, 1, -1, -1, -1, 1, -1, -3, -2, 1, 1, -1, -7, -6, 2, -1, 1, -1, -15, -20, 6, -1, 1, 1, -1, -31, -66, 20, 5, 4, -1, 1, -1, -63, -212, 66, 71, 40, -1, 2, 1, -1, -127, -666, 212, 605, 442, 11, 18, -2, 1, -1, -255, -2060, 666, 4439, 4660, 215, 226, -22, 2 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 LINKS Table of n, a(n) for n=0..65. EXAMPLE Square array begins: 1, 1, 1, 1, 1, ... -1, -1, -1, -1, -1, ... 0, -1, -3, -7, -15, ... -1, -2, -6, -20, -66, ... 1, 2, 6, 20, 66, ... MAPLE b:= proc(n, i, k) option remember; (m-> `if`(mn, 0, i^k*b(n-i, i-1, k)))))(i*(i+1)/2) end: A:= proc(n, k) option remember; `if`(n=0, 1, -add(b(n-i\$2, k)*A(i, k), i=0..n-1)) end: seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 12 2017 MATHEMATICA b[n_, i_, k_] := b[n, i, k] = If[# < n, 0, If[n == #, i!^k, b[n, i-1, k] + If[i > n, 0, i^k b[n-i, i-1, k]]]]&[i(i+1)/2]; A[n_, k_] := A[n, k] = If[n == 0, 1, -Sum[b[n-i, n-i, k] A[i, k], {i, 0, n-1}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Nov 20 2019, after Alois P. Heinz *) PROG (Python) from sympy.core.cache import cacheit from sympy import factorial as f @cacheit def b(n, i, k): m=i*(i + 1)/2 return 0 if mn else i**k*b(n - i, i - 1, k)) @cacheit def A(n, k): return 1 if n==0 else -sum([b(n - i, n - i, k)*A(i, k) for i in range(n)]) for d in range(13): print([A(n, d - n) for n in range(d + 1)]) # Indranil Ghosh, Sep 14 2017, after Maple program CROSSREFS Columns k=0..2 give A081362, A022693, A292165. Rows n=0..2 give A000012, (-1)*A000012, (-1)*A000225. Main diagonal gives A292072. Cf. A292189, A292193. Sequence in context: A027082 A140736 A284993 * A350942 A140056 A240239 Adjacent sequences: A292065 A292066 A292067 * A292069 A292070 A292071 KEYWORD sign,tabl AUTHOR Seiichi Manyama, Sep 12 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 3 00:46 EST 2024. Contains 370499 sequences. (Running on oeis4.)