|
|
A140056
|
|
Triangle of coefficients: f(x,y,n) = x^n - y^(n-1)*x - y^n; p(x,y,z,n) = f(x,y,n) + f(y,z,n) + f(z,x,n).
|
|
0
|
|
|
-3, -2, -1, -1, -2, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, 0, -1, -1, -1, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, -1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Row sums are all -3.
|
|
REFERENCES
|
Weisstein, Eric W. "Klein Quartic." http://mathworld.wolfram.com/KleinQuartic.html
|
|
LINKS
|
|
|
FORMULA
|
f(x,y,n)=x^n - y^(n - 1)*x - y^n; p(x,y,z,n)=f(x,y,n)+f(y,z,n)+f(z,x,n);
|
|
EXAMPLE
|
{-3},
{-2, -1},
{-1, -2},
{-1, -1, -1},
{-1, -1, 0, -1},
{-1, -1, 0, 0, -1},
{-1, -1, 0, 0, 0, -1},
{-1, -1, 0, 0, 0, 0, -1},
{-1, -1, 0, 0, 0, 0, 0, -1},
{-1, -1, 0, 0, 0, 0, 0, 0, -1},
{-1, -1, 0, 0, 0, 0, 0, 0, 0, -1}.
Polynomials before lower to x only are:
-3,
-x - y - z,
-xy - x z - y z,
-xy^2 - x^2 z - y z^2,
-x y^3 - x^3 z - y z^3,
-x y^4 - x^4 z - y z^4,
...
|
|
MATHEMATICA
|
f[x_, y_, n] = If[n > 0, x^n - y^(n - 1)*x - y^n, -1]; p[x_, y_, z_, n_] = f[x, y, n] + f[y, z, n] + f[z, x, n];
Table[ExpandAll[p[x, y, z, n]], {n, 0, 10}];
a = Table[CoefficientList[p[x, y, z, n] /. y -> 1 /. z -> 1, x], {n, 0, 10}];
Flatten[a]
Table[Apply[Plus, CoefficientList[p[x, y, z, n] /. y -> 1 /. z -> 1, x]], {n, 0, 10}];
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|