|
|
A140055
|
|
E.g.f.: A(x) = G(G(x)) where G(x) = x*exp(A(x)) such that G( x*exp(-G(x)) ) = x and G(x) is the e.g.f. of A140054.
|
|
3
|
|
|
1, 4, 42, 764, 20400, 731862, 33397168, 1867950856, 124680486816, 9733666171850, 874978919826264, 89437471672859532, 10289414670501314608, 1320997962702267801070, 187894667581541881127640, 29426125555003596239544848, 5046809953516305090792395328
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
EXAMPLE
|
E.g.f.: A(x) = x + 4*x^2/2! + 42*x^3/3! + 764*x^4/4! + 20400*x^5/5! +...
x*exp(A(x)) = x + 2*x^2/2! + 15*x^3/3! + 220*x^4/4! + 5025*x^5/5! +...
where G(x) = x*exp(A(x)) satisfies G(G(x)) = A(x).
|
|
MAPLE
|
b:= proc(n, k) option remember; `if`(n=0, 1/k, add(k*
b(j-1, j)*j*b(n-j, k)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n$2):
|
|
MATHEMATICA
|
m = 20; G[_] = 0;
Do[G[x_] = x Exp[G[G[x]]] + O[x]^(m+1) // Normal, {m}];
|
|
PROG
|
(PARI) {a(n)=local(A=x); for(i=0, n, A=x*exp(subst(A, x, A+x*O(x^n)))); n!*polcoeff(subst(A, x, A), n)}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|