login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients: f(x,y,n) = x^n - y^(n-1)*x - y^n; p(x,y,z,n) = f(x,y,n) + f(y,z,n) + f(z,x,n).
0

%I #12 Feb 17 2024 23:44:03

%S -3,-2,-1,-1,-2,-1,-1,-1,-1,-1,0,-1,-1,-1,0,0,-1,-1,-1,0,0,0,-1,-1,-1,

%T 0,0,0,0,-1,-1,-1,0,0,0,0,0,-1,-1,-1,0,0,0,0,0,0,-1,-1,-1,0,0,0,0,0,0,

%U 0,-1

%N Triangle of coefficients: f(x,y,n) = x^n - y^(n-1)*x - y^n; p(x,y,z,n) = f(x,y,n) + f(y,z,n) + f(z,x,n).

%C Row sums are all -3.

%H Eric Weisstein's World of Mathematics <a href="http://mathworld.wolfram.com/KleinQuartic.html">Klein Quartic</a>.

%F f(x,y,n)=x^n - y^(n - 1)*x - y^n; p(x,y,z,n)=f(x,y,n)+f(y,z,n)+f(z,x,n);

%e {-3},

%e {-2, -1},

%e {-1, -2},

%e {-1, -1, -1},

%e {-1, -1, 0, -1},

%e {-1, -1, 0, 0, -1},

%e {-1, -1, 0, 0, 0, -1},

%e {-1, -1, 0, 0, 0, 0, -1},

%e {-1, -1, 0, 0, 0, 0, 0, -1},

%e {-1, -1, 0, 0, 0, 0, 0, 0, -1},

%e {-1, -1, 0, 0, 0, 0, 0, 0, 0, -1}.

%e Polynomials before lower to x only are:

%e -3,

%e -x - y - z,

%e -xy - x z - y z,

%e -xy^2 - x^2 z - y z^2,

%e -x y^3 - x^3 z - y z^3,

%e -x y^4 - x^4 z - y z^4,

%e ...

%t f[x_, y_, n] = If[n > 0, x^n - y^(n - 1)*x - y^n, -1]; p[x_, y_, z_, n_] = f[x, y, n] + f[y, z, n] + f[z, x, n];

%t Table[ExpandAll[p[x, y, z, n]], {n, 0, 10}];

%t a = Table[CoefficientList[p[x, y, z, n] /. y -> 1 /. z -> 1, x], {n, 0, 10}];

%t Flatten[a]

%t Table[Apply[Plus, CoefficientList[p[x, y, z, n] /. y -> 1 /. z -> 1, x]], {n, 0, 10}];

%K uned,tabl,sign

%O 1,1

%A _Roger L. Bagula_, Jun 14 2008