login
A284993
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1+x^j)^(j^k) in powers of x.
3
1, 1, -1, 1, -1, 0, 1, -1, -1, -1, 1, -1, -3, -2, 1, 1, -1, -7, -6, 1, -1, 1, -1, -15, -20, 0, 0, 1, 1, -1, -31, -66, -8, 11, 4, -1, 1, -1, -63, -212, -54, 99, 42, 2, 2, 1, -1, -127, -666, -284, 725, 455, 63, 8, -2, 1, -1, -255, -2060, -1350, 4935, 4580, 958, 73
OFFSET
0,13
LINKS
FORMULA
G.f. of column k: Product_{j>=1} 1/(1+x^j)^(j^k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
-1, -1, -1, -1, -1, -1, ...
0, -1, -3, -7, -15, -31, ...
-1, -2, -6, -20, -66, -212, ...
1, 1, 0, -8, -54, -284, ...
CROSSREFS
Columns k=0-5 give A081362, A255528, A284896, A284897, A284898, A284899.
Sequence in context: A348177 A027082 A140736 * A292068 A350942 A140056
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Apr 07 2017
STATUS
approved