%I #20 Apr 11 2017 11:45:53
%S 1,1,-1,1,-1,0,1,-1,-1,-1,1,-1,-3,-2,1,1,-1,-7,-6,1,-1,1,-1,-15,-20,0,
%T 0,1,1,-1,-31,-66,-8,11,4,-1,1,-1,-63,-212,-54,99,42,2,2,1,-1,-127,
%U -666,-284,725,455,63,8,-2,1,-1,-255,-2060,-1350,4935,4580,958,73
%N Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1+x^j)^(j^k) in powers of x.
%H Seiichi Manyama, <a href="/A284993/b284993.txt">Antidiagonals n = 0..139, flattened</a>
%F G.f. of column k: Product_{j>=1} 1/(1+x^j)^(j^k).
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, ...
%e -1, -1, -1, -1, -1, -1, ...
%e 0, -1, -3, -7, -15, -31, ...
%e -1, -2, -6, -20, -66, -212, ...
%e 1, 1, 0, -8, -54, -284, ...
%Y Columns k=0-5 give A081362, A255528, A284896, A284897, A284898, A284899.
%Y Cf. A144048, A284992.
%K sign,tabl
%O 0,13
%A _Seiichi Manyama_, Apr 07 2017