OFFSET
1,2
COMMENTS
LINKS
Vladimir Pletser, Table of n, a(n) for n = 1..1000
Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022.
Index entries for linear recurrences with constant coefficients, signature (1,38,-38,-1,1).
FORMULA
a(n) = 38*a(n-3) - a(n-6) + 18 for n > 3, with a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20.
a(n) = a(n-1) + 38*(a(n-3) - a(n-4)) - (a(n-6) - a(n-7)) for n >= 4 with a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20.
G.f.: x^2*(4 + 16*x + 19*x^2 - 16*x^3 - 4*x^4 - x^5)/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7). - Stefano Spezia, Feb 24 2021
a(n) = (A198943(n) + 1)/2 - 1. - Hugo Pfoertner, Feb 26 2021
EXAMPLE
a(2) = 4 is a term because its triangular number, T(a(2)) = 4*5 / 2 = 10 is ten times a triangular number.
a(4) = 38*a(1) - a(-2) + 18 = 38*0 - (-21) + 18 = 39, etc.
MAPLE
f := gfun:-rectoproc({a(-2) = -21, a(-1) = -5, a(0) = -1, a(1) = 0, a(2) = 4, a(3) = 20, a(n) = 38*a(n-3)-a(n-6)+18}, a(n), remember); map(f, [`$`(0 .. 1000)]) ; #
MATHEMATICA
Rest@ CoefficientList[Series[x^2*(4 + 16*x + 19*x^2 - 16*x^3 - 4*x^4 - x^5)/(1 - x - 38*x^3 + 38*x^4 + x^6 - x^7), {x, 0, 30}], x] (* Michael De Vlieger, May 19 2022 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladimir Pletser, Feb 23 2021
STATUS
approved