The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A336626 Triangular numbers that are eight times another triangular number. 7
 0, 120, 528, 139128, 609960, 160554240, 703893960, 185279454480, 812293020528, 213812329916328, 937385441796000, 246739243443988680, 1081741987539564120, 284736873122033021040, 1248329316235215199128, 328586104843582662292128, 1440570949193450800230240, 379188080252621270252095320 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The triangular numbers T(t) that are eight times another triangular number T(u) : T(t) = 8*T(u). The t's are in A336625, the T(u)'s are in A336624 and the u's are in A336623. Can be defined for negative n by setting a(n) = a(-1-n) for all n in Z. LINKS Vladimir Pletser, Table of n, a(n) for n = 1..653 Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2021. Vladimir Pletser, Closed Form Equations for Triangular Numbers Multiple of Other Triangular Numbers, arXiv:2102.12392 [math.GM], 2021. Vladimir Pletser, Triangular Numbers Multiple of Triangular Numbers and Solutions of Pell Equations, arXiv:2102.13494 [math.NT], 2021. Vladimir Pletser, Using Pell equation solutions to find all triangular numbers multiple of other triangular numbers, 2022. V. Pletser, Recurrent relations for triangular multiples of other triangular numbers, Indian J. Pure Appl. Math. 53 (2022) 782-791 Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1). FORMULA a(n) = 8*A336624(n). a(n) = 1154*a(n-2) - a(n-4) + 648, for n>=2 with a(2)=120, a(1)=0, a(0)=0, a(-1)=120. a(n) = a(n-1) + 1154*a(n-2) - 1154*a(n-3) - a(n-4) + a(n-5), for n>=3 with a(3)=528, a(2)=120, a(1)=0, a(0)=0, a(-1)=120. a(n) = ((10*sqrt(2))/17 + 15/17)*(17 + 12*sqrt(2))^n + (-(10*sqrt(2))/17 + 15/17)*(17 - 12*sqrt(2))^n + (-15/17 - (45*sqrt(2))/68)*(-17 - 12*sqrt(2))^n + (-15/17 + (45*sqrt(2))/68)*(-17 + 12*sqrt(2))^n - 27*(-4 + 3*sqrt(2))*sqrt(2)*(-1/(-17 + 12*sqrt(2)))^n/(1088*(-17 + 12*sqrt(2))) - 27*(4 + 3*sqrt(2))*sqrt(2)*(-1/(-17 - 12*sqrt(2)))^n/(1088*(-17 - 12*sqrt(2))) - 9/16 - 9*(-3 + 2*sqrt(2))*sqrt(2)*(-1/(17 - 12*sqrt(2)))^n/(272*(17 - 12*sqrt(2))) - 9*(3 + 2*sqrt(2))*sqrt(2)*(-1/(17 + 12*sqrt(2)))^n/(272*(17 + 12*sqrt(2))). Let b(n) be A336625(n). Then a(n) = b(n)*(b(n)+1)/2. G.f.: 24*x^2*(5 + 17*x + 5*x^2)/(1 - x - 1154*x^2 + 1154*x^3 + x^4 - x^5). - Stefano Spezia, Oct 05 2020 From Vladimir Pletser, Feb 21 2021: (Start) a(n) = ((11*(1 + sqrt(2))^2 - (-1)^n*6*(4 + 3*sqrt(2)))*(1 + sqrt(2))^(4n) + (11*(1 - sqrt(2))^2 - (-1)^n*6*(4 - 3*sqrt(2)))*(1 - sqrt(2))^(4n))/32 - 9/16. a(n) = ((1 + 2*sqrt(2))^2*(1 + sqrt(2))^(4n) + (1 - 2*sqrt(2))^2*(1 - sqrt(2))^(4n))/32 - 9/16 for even n. a(n) = ((5 + 4*sqrt(2))^2*(1 + sqrt(2))^(4n) + (5 - 4*sqrt(2))^2*(1 - sqrt(2))^(4n))/32 - 9/16 for odd n. (End) EXAMPLE a(2) = 120 is a term because it is triangular and 120/8 = 15 is also triangular. a(3) = 1154*a(1) - a(-1) + 648 = 0 - 120 + 648 = 528; a(4) = 1154*a(2) - a(0) + 648 = 1154*120 - 0 + 648 = 139128, etc. . From Peter Luschny, Oct 19 2020: (Start) Related sequences in context, as computed by the Julia function: n [A336623, A336624, A336625, A336626 ] [0] [0, 0, 0, 0 ] [1] [5, 15, 15, 120 ] [2] [11, 66, 32, 528 ] [3] [186, 17391, 527, 139128 ] [4] [390, 76245, 1104, 609960 ] [5] [6335, 20069280, 17919, 160554240 ] [6] [13265, 87986745, 37520, 703893960 ] [7] [215220, 23159931810, 608735, 185279454480 ] [8] [450636, 101536627566, 1274592, 812293020528 ] [9] [7311161, 26726541239541, 20679087, 213812329916328] (End) MAPLE f := gfun:-rectoproc({a(n) = 1154*a(n - 2) - a(n - 4) + 648, a(2) = 120, a(1) = 0, a(0) = 0, a(-1) = 120}, a(n), remember); map(f, [\$ (1 .. 1000)])[]; # MATHEMATICA LinearRecurrence[{1, 1154, -1154, -1, 1}, {0, 120, 528, 139128, 609960}, 18] PROG (Julia) function omnibus() println("[A336623, A336624, A336625, A336626]") println([0, 0, 0, 0]) t, h = 1, 1 for n in 1:999999999 d, r = divrem(t, 8) if r == 0 d2 = 2*d s = isqrt(d2) d2 == s * (s + 1) && println([s, d, n, t]) end t, h = t + h + 1, h + 1 end end omnibus() # Peter Luschny, Oct 19 2020 CROSSREFS Subsequence of A000217. Cf. A336623, A336624, A336625. Cf. A053141, A001652, A075528, A029549, A061278, A001571, A076139, A076140, A077259, A077260, A077261, A077262, A077288, A077289, A077290, A077291, A077398, A077399, A077400, A077401. Sequence in context: A067915 A305072 A221563 * A241613 A115619 A152622 Adjacent sequences: A336623 A336624 A336625 * A336627 A336628 A336629 KEYWORD easy,nonn AUTHOR Vladimir Pletser, Oct 04 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 06:16 EST 2024. Contains 370219 sequences. (Running on oeis4.)