OFFSET
1,1
COMMENTS
(k/4)^(1/3) < d1 < k^(1/3). Proof: as k = d1 * d2 * d3 < d1 * (2*d1) * (2*d1) = 4*d1^3 we have (k/4)^(1/3) < d1 and as k = d1 * d2 * d3 > d1 * d1 * d1 = d1^3 we have k^(1/3) > d1. Q.e.d.
EXAMPLE
210 is in the sequence because 5*6*7 = 210 and each of these factors are pairwise coprime and 5 < 6 < 7 < 2*5 = 10.
CROSSREFS
KEYWORD
nonn
AUTHOR
David A. Corneth and Amiram Eldar, Jul 28 2020
STATUS
approved