login
A252954
Number of (n+2)X(1+2) 0..4 arrays with every consecutive three elements in every row and diagonal having exactly two distinct values, and in every column and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order
1
60, 140, 297, 711, 1543, 3461, 7637, 16689, 35609, 78429, 165847, 353699, 759497, 1602963, 3361709, 7188651, 14983771, 31325141, 66287453, 137719185, 285727121, 602441997, 1243951375, 2572947779, 5396750465, 11110939203, 22884164645
OFFSET
1,1
COMMENTS
Column 1 of A252961
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) -10*a(n-2) +10*a(n-3) -61*a(n-4) +124*a(n-5) +45*a(n-6) -182*a(n-7) -54*a(n-8) -570*a(n-9) +2205*a(n-10) -2268*a(n-11) +756*a(n-12) for n>15
EXAMPLE
Some solutions for n=2
..0..1..1....0..1..1....0..1..0....0..1..1....0..1..0....0..0..1....0..1..1
..1..0..0....2..2..3....2..2..0....2..0..0....1..2..1....2..0..2....2..0..0
..2..3..2....4..4..0....3..0..0....3..2..2....3..3..2....3..0..3....3..2..2
..4..4..3....0..0..4....0..3..0....1..1..3....0..0..3....4..0..0....1..3..3
CROSSREFS
Sequence in context: A334407 A336628 A336443 * A221990 A043478 A044311
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 25 2014
STATUS
approved