login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334407
Numbers k whose divisors can be partitioned into two disjoint sets with equal sum, such that if d is in one set, then k/d is in the other set.
2
60, 140, 160, 168, 180, 216, 220, 252, 260, 300, 312, 340, 360, 380, 396, 420, 432, 460, 462, 480, 500, 504, 520, 540, 580, 600, 616, 620, 624, 630, 660, 672, 684, 720, 728, 740, 756, 780, 792, 810, 820, 840, 858, 860, 864, 870, 924, 936, 940, 960, 990, 1008, 1020
OFFSET
1,1
LINKS
EXAMPLE
60 is a term since its set of divisors can be partitioned into two disjoint subsets: {1, 6, 12, 15, 20, 30} and {60, 10, 5, 4, 3, 2} = {60/1, 60/6, 60/12, 60/15, 60/20, 60/30} with the equal sum of 84, and with no pair of complementary divisors (d, 60/d) in the same subset.
MATHEMATICA
seqQ[n_] := Module[{d = Divisors[n]}, nd = Length[d]; If[OddQ[nd], False, divpairs = d[[-1 ;; nd/2 + 1 ;; -1]] - d[[1 ;; nd/2]]; sd = Plus @@ divpairs; If[OddQ[sd], False, SeriesCoefficient[Series[Product[1 + x^divpairs[[i]], {i, Length[divpairs]}], {x, 0, sd/2}], sd/2] > 0]]]; Select[Range[1000], seqQ]
CROSSREFS
Subsequence of A083207.
Sequence in context: A044628 A181190 A246474 * A336628 A336443 A252954
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 27 2020
STATUS
approved