login
A252955
Number of (n+2)X(2+2) 0..4 arrays with every consecutive three elements in every row and diagonal having exactly two distinct values, and in every column and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order
1
119, 120, 185, 337, 596, 1186, 2279, 4165, 8552, 16744, 31079, 64381, 127298, 237724, 494963, 983227, 1846154, 3851596, 7687829, 14482087, 30290270, 60671074, 114655493, 240248527, 483021992, 914633350, 1921066049, 3874689085
OFFSET
1,1
COMMENTS
Column 2 of A252961
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) -6*a(n-2) +8*a(n-3) -55*a(n-4) +75*a(n-5) +71*a(n-6) -85*a(n-7) -42*a(n-8) -600*a(n-9) +1575*a(n-10) -1323*a(n-11) +378*a(n-12) for n>14
EXAMPLE
Some solutions for n=2
..0..0..1..1....0..1..1..2....0..1..1..2....0..1..1..2....0..1..1..2
..2..2..0..0....1..0..1..0....3..3..4..4....3..0..0..4....3..0..0..4
..3..3..2..2....3..3..1..3....4..0..0..1....4..3..3..1....2..3..3..1
..4..4..3..4....2..2..1..1....1..1..3..3....2..1..1..3....1..2..2..0
CROSSREFS
Sequence in context: A013683 A071843 A234691 * A171697 A172017 A049048
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 25 2014
STATUS
approved