login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071843
Gives an LCD representation of n.
0
119, 17, 107, 59, 29, 62, 126, 19, 127, 63, 15249, 2193, 13713, 7569, 3729, 7953, 16145, 2449, 16273, 8081, 15339, 2283, 13803, 7659, 3819, 8043, 16235, 2539, 16363, 8171, 15291, 2235, 13755, 7611, 3771, 7995, 16187, 2491, 16315, 8123, 15261, 2205
OFFSET
0,1
COMMENTS
This is based on the following way of writing "8":
|--2--|
4.....1
|--8--|
64...16
|-32--|
The powers of 2 present in the LCD representation are added. For example: n=1 gives 1 + 16 = 17. According to the position of a digit in n, [1,2,4...] is replaced by [128,256...],[16384,32768...], etc.
PROG
(Scilab) function lcd: nb: final result ndc: number of digits u: interesting digit M(i, j): (j-1)th bit of (i-1) function [nb]=lcd(n); nb=0; M=[1 1 1 0 1 1 1; 1 0 0 0 1 0 0; 1 1 0 1 0 1 1; 1 1 0 1 1 1 0; 1 0 1 1 1 0 0; 0 1 1 1 1 1 0; 0 1 1 1 1 1 1; 1 1 0 0 1 0 0; 1 1 1 1 1 1 1; 1 1 1 1 1 1 0]; if n <> 0 then ndc=int(log10(n))+1, else ndc = 1, end; for cx = ndc:-1:1; u=int(n/(10^(cx-1))); n=n-u*(10^(cx-1)); for j=0:6; nb=nb+M(u+1, j+1)*2^(j+7*(ndc-cx)), end, end; endfunction
CROSSREFS
Cf. A006942 (bitcount).
Coding and glyph variations: A234691, A234692.
Sequence in context: A143776 A191949 A013683 * A234691 A252955 A171697
KEYWORD
nonn,base,easy
AUTHOR
Anonymous, Jun 08 2002
EXTENSIONS
More terms from Antonio G. Astudillo, Apr 21 2003
STATUS
approved