login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341892
Numbers that are the sum of five fourth powers in exactly nine ways.
7
619090, 775714, 1100579, 1179379, 1186834, 1243699, 1357315, 1367539, 1373859, 1422595, 1431234, 1436419, 1511299, 1536019, 1699234, 1734899, 1839874, 1858594, 1880850, 1950355, 1951650, 1978915, 2044819, 2052899, 2069955, 2085139, 2101779, 2119459, 2133234
OFFSET
1,1
COMMENTS
Differs from A341781 at term 3 because
954979 = 1^4 + 2^4 + 11^4 + 19^4 + 30^4
= 1^4 + 7^4 + 18^4 + 25^4 + 26^4
= 3^4 + 8^4 + 17^4 + 20^4 + 29^4
= 4^4 + 8^4 + 13^4 + 25^4 + 27^4
= 4^4 + 9^4 + 10^4 + 11^4 + 31^4
= 6^4 + 6^4 + 15^4 + 21^4 + 29^4
= 7^4 + 10^4 + 18^4 + 19^4 + 29^4
= 11^4 + 11^4 + 20^4 + 22^4 + 27^4
= 16^4 + 17^4 + 17^4 + 24^4 + 25^4
= 18^4 + 19^4 + 20^4 + 23^4 + 23^4.
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..10000
EXAMPLE
619090 = 1^4 + 2^4 + 18^4 + 22^4 + 23^4
= 1^4 + 3^4 + 4^4 + 8^4 + 28^4
= 1^4 + 11^4 + 14^4 + 22^4 + 24^4
= 2^4 + 2^4 + 8^4 + 17^4 + 27^4
= 2^4 + 13^4 + 13^4 + 18^4 + 26^4
= 3^4 + 6^4 + 12^4 + 16^4 + 27^4
= 4^4 + 12^4 + 14^4 + 23^4 + 23^4
= 9^4 + 12^4 + 16^4 + 21^4 + 24^4
= 14^4 + 16^4 + 18^4 + 19^4 + 23^4
so 619090 is a term.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 9])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved