login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341898
Numbers that are the sum of five fourth powers in exactly ten ways.
6
954979, 1205539, 1574850, 1713859, 1863859, 1877394, 1882579, 2071939, 2109730, 2225859, 2288179, 2419954, 2492434, 2495939, 2605314, 2711394, 2784499, 2835939, 2847394, 2880994, 2924674, 3007474, 3061939, 3071379, 3074179, 3117235, 3127219, 3174834, 3190899
OFFSET
1,1
COMMENTS
Differs at term 5 because
1801459 = 1^4 + 4^4 + 5^4 + 28^4 + 33^4
= 1^4 + 4^4 + 12^4 + 23^4 + 35^4
= 1^4 + 7^4 + 16^4 + 30^4 + 31^4
= 1^4 + 16^4 + 18^4 + 19^4 + 35^4
= 3^4 + 6^4 + 18^4 + 21^4 + 35^4
= 5^4 + 7^4 + 19^4 + 24^4 + 34^4
= 5^4 + 9^4 + 14^4 + 29^4 + 32^4
= 7^4 + 9^4 + 16^4 + 25^4 + 34^4
= 7^4 + 14^4 + 16^4 + 21^4 + 35^4
= 8^4 + 9^4 + 20^4 + 29^4 + 31^4
= 10^4 + 19^4 + 19^4 + 21^4 + 34^4.
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..10000
EXAMPLE
954979 = 1^4 + 2^4 + 11^4 + 19^4 + 30^4
= 1^4 + 7^4 + 18^4 + 25^4 + 26^4
= 3^4 + 8^4 + 17^4 + 20^4 + 29^4
= 4^4 + 8^4 + 13^4 + 25^4 + 27^4
= 4^4 + 9^4 + 10^4 + 11^4 + 31^4
= 6^4 + 6^4 + 15^4 + 21^4 + 29^4
= 7^4 + 10^4 + 18^4 + 19^4 + 29^4
= 11^4 + 11^4 + 20^4 + 22^4 + 27^4
= 16^4 + 17^4 + 17^4 + 24^4 + 25^4
= 18^4 + 19^4 + 20^4 + 23^4 + 23^4
so 954979 is a term.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 5):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 10])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved