OFFSET
1,1
COMMENTS
Differs from A344928 at term 2 because 677125218 = 2^4 + 109^4 + 111^4 + 140^4 = 21^4 + 98^4 + 119^4 + 140^4 = 27^4 + 94^4 + 121^4 + 140^4 = 28^4 + 35^4 + 42^4 + 161^4 = 34^4 + 89^4 + 123^4 + 140^4 = 36^4 + 98^4 + 109^4 + 145^4 = 44^4 + 75^4 + 128^4 + 139^4 = 49^4 + 77^4 + 126^4 + 140^4 = 61^4 + 66^4 + 127^4 + 140^4 = 70^4 + 119^4 + 119^4 + 126^4 = 75^4 + 76^4 + 98^4 + 151^4.
LINKS
Sean A. Irvine, Table of n, a(n) for n = 1..1446
EXAMPLE
592417938 is a term because 592417938 = 6^4 + 59^4 + 65^4 + 154^4 = 7^4 + 11^4 + 20^4 + 156^4 = 10^4 + 17^4 + 17^4 + 156^4 = 12^4 + 112^4 + 115^4 + 127^4 = 15^4 + 86^4 + 107^4 + 142^4 = 21^4 + 49^4 + 70^4 + 154^4 = 25^4 + 107^4 + 112^4 + 132^4 = 26^4 + 45^4 + 71^4 + 154^4 = 28^4 + 105^4 + 112^4 + 133^4 = 63^4 + 77^4 + 112^4 + 140^4.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 10])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
David Consiglio, Jr., Jun 02 2021
EXTENSIONS
More terms from Sean A. Irvine, Jun 03 2021
STATUS
approved