login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057535
Numbers expressible as (a^2 - 1)*(b^2 - 1) in 5 distinct ways.
6
588107520, 67270694400, 546939993600, 2128050512640, 37400697734400, 5566067918611200
OFFSET
1,1
COMMENTS
The next term (if it exists) is greater than 2^70.
PROG
(PARI) { f(a, b) = (a+1)*(a-1)*(b+1)*(b-1) } ans=vector(6, x, [0, 0]); clear=ans; { g(a) = b=divisors(a*a-1); l=length(b); b=b+vector(l, x, a); for(x=1, l/2, c=4*a*b[x]*(a+1)*(a-1)*(b[x]+1)*(b[x]-1)*(a*b[x]-1)/((b[x]-a)*(b[x]-a));
d=floor(sqrt(sqrt(c))); count=1; for( y=2, d, if (c%(y*y-1)==0, e=ceil(sqrt(c/(y*y-1))); if (f(y, e)==c, ans[count]=[y, e]; count=count+1, ), ); ); if ( count>5, print("g:", a, " ", c, " ", ans); ans=clear, ); ); } { find()= for(n=560, 10001, print(n); g(n)); }
Store program as text file, load gp, \r textfilename and then run function find() to search for a 7th entry.
(PARI) { f(a, b) = (a+1)*(a-1)*(b+1)*(b-1) } ans=vector(6, x, [0, 0])
CROSSREFS
Cf. A134856, A134857, A134858 (identical?).
Sequence in context: A032755 A234391 A297448 * A134858 A344928 A344929
KEYWORD
nonn
AUTHOR
K. S. Brown (ksbrown(AT)seanet.com), Fred W. Helenius (fredh(AT)ix.netcom.com), Dean Hickerson, Randall L Rathbun
STATUS
approved