login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344861
Numbers that are the sum of three fourth powers in exactly ten ways.
5
49511121842, 364765611938, 703409488418, 792177949472, 2667500248322, 3602781562562, 3999861055442, 4010400869202, 5698033074818, 5836249791008, 6330685395762, 7250378688098, 7695882509378, 8746828790882, 10383571090802, 11254551814688, 12160605587858
OFFSET
1,1
COMMENTS
Differs from A344862 at term 2 because 281539574498 = 7^4 + 609^4 + 616^4 = 41^4 + 591^4 + 632^4 = 81^4 + 568^4 + 649^4 = 99^4 + 557^4 + 656^4 = 121^4 + 543^4 + 664^4 = 168^4 + 511^4 + 679^4 = 224^4 + 469^4 + 693^4 = 239^4 + 457^4 + 696^4 = 256^4 + 443^4 + 699^4 = 269^4 + 432^4 + 701^4 = 293^4 + 411^4 + 704^4 = 336^4 + 371^4 + 707^4.
LINKS
EXAMPLE
49511121842 is a term because 49511121842 = 13^4 + 390^4 + 403^4 = 35^4 + 378^4 + 413^4 = 70^4 + 357^4 + 427^4 = 103^4 + 335^4 + 438^4 = 117^4 + 325^4 + 442^4 = 137^4 + 310^4 + 447^4 = 175^4 + 322^4 + 441^4 = 182^4 + 273^4 + 455^4 = 202^4 + 255^4 + 457^4 = 225^4 + 233^4 + 458^4.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 10])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, Jun 01 2021
STATUS
approved