login
A345156
Numbers that are the sum of four third powers in exactly ten ways.
6
21896, 36225, 48825, 51506, 52416, 53200, 58338, 58968, 60480, 66024, 67851, 70434, 70525, 71155, 72819, 76923, 78624, 78912, 85995, 87507, 88641, 90181, 90783, 91728, 93555, 97552, 98280, 98560, 99008, 99225, 99792, 100170, 103040, 104104, 104265, 104958
OFFSET
1,1
COMMENTS
Differs from A345155 at term 3 because 46872 = 1^3 + 16^3 + 22^3 + 30^3 = 2^3 + 11^3 + 17^3 + 33^3 = 3^3 + 3^3 + 4^3 + 35^3 = 3^3 + 4^3 + 26^3 + 29^3 = 3^3 + 5^3 + 23^3 + 31^3 = 4^3 + 10^3 + 24^3 + 30^3 = 5^3 + 17^3 + 23^3 + 29^3 = 6^3 + 10^3 + 20^3 + 32^3 = 11^3 + 11^3 + 21^3 + 31^3 = 11^3 + 14^3 + 17^3 + 32^3 = 19^3 + 21^3 + 21^3 + 25^3.
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..10000
EXAMPLE
21896 is a term because 21896 = 1^3 + 11^3 + 19^3 + 22^3 = 2^3 + 2^3 + 12^3 + 26^3 = 2^3 + 3^3 + 19^3 + 23^3 = 2^3 + 5^3 + 15^3 + 25^3 = 3^3 + 10^3 + 16^3 + 24^3 = 3^3 + 17^3 + 19^3 + 19^3 = 4^3 + 6^3 + 20^3 + 22^3 = 5^3 + 8^3 + 14^3 + 25^3 = 7^3 + 11^3 + 17^3 + 23^3 = 8^3 + 9^3 + 19^3 + 22^3.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**3 for x in range(1, 1000)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 10])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved