Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #15 May 10 2024 02:26:44
%S 954979,1205539,1574850,1713859,1863859,1877394,1882579,2071939,
%T 2109730,2225859,2288179,2419954,2492434,2495939,2605314,2711394,
%U 2784499,2835939,2847394,2880994,2924674,3007474,3061939,3071379,3074179,3117235,3127219,3174834,3190899
%N Numbers that are the sum of five fourth powers in exactly ten ways.
%C Differs at term 5 because
%C 1801459 = 1^4 + 4^4 + 5^4 + 28^4 + 33^4
%C = 1^4 + 4^4 + 12^4 + 23^4 + 35^4
%C = 1^4 + 7^4 + 16^4 + 30^4 + 31^4
%C = 1^4 + 16^4 + 18^4 + 19^4 + 35^4
%C = 3^4 + 6^4 + 18^4 + 21^4 + 35^4
%C = 5^4 + 7^4 + 19^4 + 24^4 + 34^4
%C = 5^4 + 9^4 + 14^4 + 29^4 + 32^4
%C = 7^4 + 9^4 + 16^4 + 25^4 + 34^4
%C = 7^4 + 14^4 + 16^4 + 21^4 + 35^4
%C = 8^4 + 9^4 + 20^4 + 29^4 + 31^4
%C = 10^4 + 19^4 + 19^4 + 21^4 + 34^4.
%H David Consiglio, Jr., <a href="/A341898/b341898.txt">Table of n, a(n) for n = 1..10000</a>
%e 954979 = 1^4 + 2^4 + 11^4 + 19^4 + 30^4
%e = 1^4 + 7^4 + 18^4 + 25^4 + 26^4
%e = 3^4 + 8^4 + 17^4 + 20^4 + 29^4
%e = 4^4 + 8^4 + 13^4 + 25^4 + 27^4
%e = 4^4 + 9^4 + 10^4 + 11^4 + 31^4
%e = 6^4 + 6^4 + 15^4 + 21^4 + 29^4
%e = 7^4 + 10^4 + 18^4 + 19^4 + 29^4
%e = 11^4 + 11^4 + 20^4 + 22^4 + 27^4
%e = 16^4 + 17^4 + 17^4 + 24^4 + 25^4
%e = 18^4 + 19^4 + 20^4 + 23^4 + 23^4
%e so 954979 is a term.
%o (Python)
%o from itertools import combinations_with_replacement as cwr
%o from collections import defaultdict
%o keep = defaultdict(lambda: 0)
%o power_terms = [x**4 for x in range(1, 1000)]
%o for pos in cwr(power_terms, 5):
%o tot = sum(pos)
%o keep[tot] += 1
%o rets = sorted([k for k, v in keep.items() if v == 10])
%o for x in range(len(rets)):
%o print(rets[x])
%Y Cf. A341892, A341897, A344929, A345188, A345822.
%K nonn
%O 1,1
%A _David Consiglio, Jr._, Jun 04 2021