login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322263
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = numerator of Sum_{d|n} 1/d^k.
1
1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 7, 2, 1, 17, 28, 21, 6, 4, 1, 33, 82, 73, 26, 2, 2, 1, 65, 244, 273, 126, 25, 8, 4, 1, 129, 730, 1057, 626, 7, 50, 15, 3, 1, 257, 2188, 4161, 3126, 697, 344, 85, 13, 4, 1, 513, 6562, 16513, 15626, 671, 2402, 585, 91, 9, 2, 1, 1025, 19684, 65793, 78126, 23725, 16808, 4369, 757, 13, 12, 6
OFFSET
1,3
FORMULA
G.f. of column k: Sum_{j>=1} x^j/(j^k*(1 - x^j)) (for rationals Sum_{d|n} 1/d^k).
Dirichlet g.f. of column k: zeta(s)*zeta(s+k) (for rationals Sum_{d|n} 1/d^k).
A(n,k) = numerator of sigma_k(n)/n^k.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 3/2, 5/4, 9/8, 17/16, 33/32, ...
2, 4/3, 10/9, 28/27, 82/81, 244/243, ...
3, 7/4, 21/16, 73/64, 273/256, 1057/1024, ...
2, 6/5, 26/25, 126/125, 626/625, 3126/3125, ...
4, 2, 25/18, 7/6, 697/648, 671/648, ...
MATHEMATICA
Table[Function[k, Numerator[DivisorSigma[-k, n]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
Table[Function[k, Numerator[DivisorSigma[k, n]/n^k]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
Table[Function[k, Numerator[SeriesCoefficient[Sum[x^j/(j^k (1 - x^j)), {j, 1, n}], {x, 0, n}]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
KEYWORD
nonn,tabl,frac
AUTHOR
Ilya Gutkovskiy, Dec 01 2018
STATUS
approved