login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279394
Triangle read by rows, T(n,m) = sigma_{n-m}(m) for n >= 1, m = 1,2, ..., n.
11
1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 7, 2, 1, 17, 28, 21, 6, 4, 1, 33, 82, 73, 26, 12, 2, 1, 65, 244, 273, 126, 50, 8, 4, 1, 129, 730, 1057, 626, 252, 50, 15, 3, 1, 257, 2188, 4161, 3126, 1394, 344, 85, 13, 4, 1, 513, 6562, 16513, 15626, 8052, 2402, 585, 91, 18, 2, 1, 1025, 19684, 65793, 78126, 47450, 16808, 4369, 757, 130, 12, 6
OFFSET
1,3
COMMENTS
See A109974 (downward antidiagonals) for details and references. sigma_k(n) is the sum of the k-th power of the positive divisors of n.
This is the triangle read by rows obtained from the array sigma_k(n) for k >= 0, n >= 1, read by upward antidiagonals.
The row sums are A108639.
FORMULA
T(n, m) = sigma_{n-m}(m), n >= 1, m = 1..n.
EXAMPLE
The triangle T(n, m) begins:
n\m 1 2 3 4 5 6 7 8 9 10
1: 1
2: 1 2
3: 1 3 2
4: 1 5 4 3
5: 1 9 10 7 2
6: 1 17 28 21 6 4
7: 1 33 82 73 26 12 2
8: 1 65 244 273 126 50 8 4
9: 1 129 730 1057 626 252 50 15 3
10: 1 257 2188 4161 3126 1394 344 85 13 4
...
n = 11: 1 513 6562 16513 15626 8052 2402 585 91 18 2,
n = 12: 1 1025 19684 65793 78126 47450 16808 4369 757 130 12 6.
...
MAPLE
T := (n, k) -> numtheory:-sigma[n-k](k):
seq(seq(T(n, k), k=1..n), n=1..12); # Peter Luschny, Jan 07 2017
MATHEMATICA
Table[DivisorSigma[k, #] &[n - k + 1], {n, 0, 11}, {k, n, 0, -1}] (* Michael De Vlieger, Jan 09 2017 *)
CROSSREFS
Sequence in context: A131344 A129262 A322263 * A308509 A280514 A246105
KEYWORD
nonn,tabl,easy
AUTHOR
Wolfdieter Lang, Jan 07 2017
STATUS
approved