login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017695
Numerator of sum of -16th powers of divisors of n.
3
1, 65537, 43046722, 4295032833, 152587890626, 1410576509857, 33232930569602, 281479271743489, 1853020231898563, 5000076293978081, 45949729863572162, 30814514057170571, 665416609183179842, 1088993285370003137, 6568408508343827972, 18447025552981295105, 48661191875666868482
OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
FORMULA
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017696(n) = zeta(16) (A013674).
Dirichlet g.f. of a(n)/A017696(n): zeta(s)*zeta(s+16).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017696(k) = zeta(17) (A013675). (End)
MATHEMATICA
Table[Numerator[Total[1/Divisors[n]^16]], {n, 20}] (* Harvey P. Dale, Sep 26 2014 *)
Table[Numerator[DivisorSigma[16, n]/n^16], {n, 1, 20}] (* G. C. Greubel, Nov 05 2018 *)
PROG
(PARI) vector(20, n, numerator(sigma(n, 16)/n^16)) \\ G. C. Greubel, Nov 05 2018
(Magma) [Numerator(DivisorSigma(16, n)/n^16): n in [1..20]]; // G. C. Greubel, Nov 05 2018
CROSSREFS
Cf. A017696 (denominator), A013674, A013675.
Sequence in context: A123388 A070816 A133864 * A013964 A036094 A133865
KEYWORD
nonn,frac
STATUS
approved