login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070816
Solutions to phi(gpf(x)) - gpf(phi(x)) = 65534 = c are special multiples of 65537, x=65537*k, where the largest prime factors of factor k were observed in {2, 3, 5, 17, 257}.
5
65537, 131074, 196611, 262148, 327685, 393222, 524296, 655370, 786444, 983055, 1048592, 1114129, 1310740, 1572888, 1966110, 2097184, 2228258, 2621480, 3145776, 3342387, 3932220, 4194368, 4456516, 5242960, 5570645, 6291552
OFFSET
1,1
COMMENTS
See solutions to other even cases of c [=A070813]: A007283 for 0, A070004 for 2, A070814 for 14, A070815 for 254.
EXAMPLE
For n = 572662306 = 2*17*257*65537, gpf(n) = 65537, phi(n) = 268435456, commutator[572662306] = phi(65537) - gpf(268435456) = 65536 - 2 = 65534.
MATHEMATICA
pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Do[s=EulerPhi[pf[n]]-pf[EulerPhi[n]]; If[Equal[s, 65534], Print[{n, n/65537, pf[n/65537]}]], {n, 3, 1000000}] (* Terms of sequence are n *)
KEYWORD
nonn
AUTHOR
Labos Elemer, May 09 2002
STATUS
approved