Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Apr 02 2024 03:40:05
%S 1,65537,43046722,4295032833,152587890626,1410576509857,
%T 33232930569602,281479271743489,1853020231898563,5000076293978081,
%U 45949729863572162,30814514057170571,665416609183179842,1088993285370003137,6568408508343827972,18447025552981295105,48661191875666868482
%N Numerator of sum of -16th powers of divisors of n.
%C Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
%H G. C. Greubel, <a href="/A017695/b017695.txt">Table of n, a(n) for n = 1..10000</a>
%F From _Amiram Eldar_, Apr 02 2024: (Start)
%F sup_{n>=1} a(n)/A017696(n) = zeta(16) (A013674).
%F Dirichlet g.f. of a(n)/A017696(n): zeta(s)*zeta(s+16).
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017696(k) = zeta(17) (A013675). (End)
%t Table[Numerator[Total[1/Divisors[n]^16]],{n,20}] (* _Harvey P. Dale_, Sep 26 2014 *)
%t Table[Numerator[DivisorSigma[16, n]/n^16], {n, 1, 20}] (* _G. C. Greubel_, Nov 05 2018 *)
%o (PARI) vector(20, n, numerator(sigma(n, 16)/n^16)) \\ _G. C. Greubel_, Nov 05 2018
%o (Magma) [Numerator(DivisorSigma(16,n)/n^16): n in [1..20]]; // _G. C. Greubel_, Nov 05 2018
%Y Cf. A017696 (denominator), A013674, A013675.
%K nonn,frac
%O 1,2
%A _N. J. A. Sloane_