login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017699
Numerator of sum of -18th powers of divisors of n.
3
1, 262145, 387420490, 68719738881, 3814697265626, 50780172175525, 1628413597910450, 18014467229220865, 150094635684419611, 100000381469752777, 5559917313492231482, 4437239151658178615, 112455406951957393130, 213440241312117457625, 295578376770097015348
OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
FORMULA
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017700(n) = zeta(18) (A013676).
Dirichlet g.f. of a(n)/A017700(n): zeta(s)*zeta(s+18).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017700(k) = zeta(19) (A013677). (End)
MATHEMATICA
Table[Numerator[DivisorSigma[18, n]/n^18], {n, 1, 20}] (* G. C. Greubel, Nov 05 2018 *)
PROG
(PARI) vector(20, n, numerator(sigma(n, 18)/n^18)) \\ G. C. Greubel, Nov 05 2018
(Magma) [Numerator(DivisorSigma(18, n)/n^18): n in [1..20]]; // G. C. Greubel, Nov 05 2018
CROSSREFS
Cf. A017700 (denominator), A013676, A013677.
Sequence in context: A051441 A351315 A352984 * A013966 A036096 A170792
KEYWORD
nonn,frac
STATUS
approved