login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285441
Expansion of q^(-2/5) * r(q)^2 * (1 + r(q) * r(q^2)^2) in powers of q where r() is the Rogers-Ramanujan continued fraction.
1
1, -1, 0, 2, -2, -2, 5, -1, -6, 7, 2, -12, 6, 11, -15, -2, 22, -14, -20, 31, 4, -41, 24, 37, -58, -9, 80, -44, -68, 105, 12, -143, 83, 119, -184, -16, 238, -144, -196, 307, 30, -391, 234, 317, -502, -49, 638, -374, -511, 804, 68, -1014, 600, 802, -1254, -99, 1562
OFFSET
0,4
COMMENTS
G.f. A(q) satisfies: A(q) = q^(-2/5) * r(q)^2 * (1 + k(q)) = q^(-2/5) * r(q^2) * (1 - k(q)), where k(q) = r(q) * r(q^2)^2.
LINKS
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction
PROG
(Ruby)
def s(k, m, n)
s = 0
(1..n).each{|i| s += i if n % i == 0 && i % k == m}
s
end
def A007325(n)
ary = [1]
a = [0] + (1..n).map{|i| s(5, 1, i) + s(5, 4, i) - s(5, 2, i) - s(5, 3, i)}
(1..n).each{|i| ary << (1..i).inject(0){|s, j| s - a[j] * ary[-j]} / i}
ary
end
def mul(f_ary, b_ary, m)
s1, s2 = f_ary.size, b_ary.size
ary = Array.new(s1 + s2 - 1, 0)
(0..s1 - 1).each{|i|
(0..s2 - 1).each{|j|
ary[i + j] += f_ary[i] * b_ary[j]
}
}
ary[0..m]
end
def A285441(n)
ary1 = A007325(n)
ary2 = Array.new(n + 1, 0)
(0..n / 2).each{|i| ary2[i * 2] = ary1[i]}
ary = [-1] + mul(ary1, mul(ary2, ary2, n), n)[0..-2]
mul(ary2, (0..n).map{|i| -ary[i]}, n)
end
p A285441(100)
CROSSREFS
Cf. A007325 (q^(-1/5) * r(q)), A055101, A112274 (k(q)), A112803 (1 + k(q)), A124242 (1 - k(q)), A285348, A285349.
Sequence in context: A279805 A123914 A347356 * A088885 A232736 A275887
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 19 2017
STATUS
approved