login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A347356
a(n) = m/A006939(A001221(m)) with m = A347284(n).
1
1, 1, 2, 2, 2, 4, 24, 24, 48, 48, 96, 576, 576, 1152, 34560, 207360, 414720, 414720, 829440, 174182400, 1045094400, 2090188800, 2090188800, 2090188800, 4180377600, 25082265600, 25082265600, 50164531200, 1504935936000, 3009871872000, 18059231232000
OFFSET
1,3
LINKS
Michael De Vlieger, Diagram of prime power decompositions of A347284(n) for 2 <= n <= 14, showing a(n) in blue, A006939(A089576(n)) in red, and the number A347284(n) in black.
FORMULA
a(n) = A347284(n)/A006939(A089576(n)).
EXAMPLE
Diagram of prime power decomposition of A347284(12) = 2^12 * 3^7 * 5^4 * 7^3 * 11^2 * 13, showing Chernoff number A006939(6) with "x" and "X", A002110(A347354(12)) with "X", and a(12) with "o":
12 o
11 o
10 o
9 o
8 o
7 o o
6 x o
5 x x
4 x x x
3 x x x x
2 x x x x x
1 X X X X X X
2 3 5 7 ...
A347284(12) = A006939(6) * a(12)
= 5244319080000 * 576
= 3020727790080000.
MATHEMATICA
Block[{nn = 31, a = {}, b, c, e, i, p}, Array[Set[e[#], 0] &, Floor[2^# If[# <= 4, 1/2, -1 + 2^(7/(3 #))]] &[Ceiling@ Log2@ nn]]; Do[e[1]++; b = {2^e[1]}; c = {e[1]}; Do[If[Last[b] == 1, Break[], i = e[j]; p = Prime[j]; While[p^i < b[[j - 1]], i++]; AppendTo[b, p^(i - 1)]; AppendTo[c, (i - 1)]; If[i > e[j], e[j]++]], {j, 2, k}]; AppendTo[a, If[First[#] == 0, 1, Times @@ MapIndexed[Prime[First[#2]]^#1 &, TakeWhile[#, # > 0 &]]] &[# - Range[Length[#], 1, -1]] &@ If[k > 2, Most@ c, c]], {k, nn}]; a]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Oct 02 2021
STATUS
approved