%I #26 Oct 24 2018 02:32:50
%S 1,-1,0,2,-2,-2,5,-1,-6,7,2,-12,6,11,-15,-2,22,-14,-20,31,4,-41,24,37,
%T -58,-9,80,-44,-68,105,12,-143,83,119,-184,-16,238,-144,-196,307,30,
%U -391,234,317,-502,-49,638,-374,-511,804,68,-1014,600,802,-1254,-99,1562
%N Expansion of q^(-2/5) * r(q)^2 * (1 + r(q) * r(q^2)^2) in powers of q where r() is the Rogers-Ramanujan continued fraction.
%C G.f. A(q) satisfies: A(q) = q^(-2/5) * r(q)^2 * (1 + k(q)) = q^(-2/5) * r(q^2) * (1 - k(q)), where k(q) = r(q) * r(q^2)^2.
%H Seiichi Manyama, <a href="/A285441/b285441.txt">Table of n, a(n) for n = 0..5000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rogers-RamanujanContinuedFraction.html">Rogers-Ramanujan Continued Fraction</a>
%o (Ruby)
%o def s(k, m, n)
%o s = 0
%o (1..n).each{|i| s += i if n % i == 0 && i % k == m}
%o s
%o end
%o def A007325(n)
%o ary = [1]
%o a = [0] + (1..n).map{|i| s(5, 1, i) + s(5, 4, i) - s(5, 2, i) - s(5, 3, i)}
%o (1..n).each{|i| ary << (1..i).inject(0){|s, j| s - a[j] * ary[-j]} / i}
%o ary
%o end
%o def mul(f_ary, b_ary, m)
%o s1, s2 = f_ary.size, b_ary.size
%o ary = Array.new(s1 + s2 - 1, 0)
%o (0..s1 - 1).each{|i|
%o (0..s2 - 1).each{|j|
%o ary[i + j] += f_ary[i] * b_ary[j]
%o }
%o }
%o ary[0..m]
%o end
%o def A285441(n)
%o ary1 = A007325(n)
%o ary2 = Array.new(n + 1, 0)
%o (0..n / 2).each{|i| ary2[i * 2] = ary1[i]}
%o ary = [-1] + mul(ary1, mul(ary2, ary2, n), n)[0..-2]
%o mul(ary2, (0..n).map{|i| -ary[i]}, n)
%o end
%o p A285441(100)
%Y Cf. A007325 (q^(-1/5) * r(q)), A055101, A112274 (k(q)), A112803 (1 + k(q)), A124242 (1 - k(q)), A285348, A285349.
%K sign
%O 0,4
%A _Seiichi Manyama_, Apr 19 2017