login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276187
Number of subsets of {1,..,n} of cardinality >= 2 such that the elements of each counted subset are pairwise coprime.
11
0, 1, 4, 7, 18, 21, 48, 63, 94, 105, 220, 235, 482, 529, 600, 711, 1438, 1501, 3020, 3211, 3594, 3849, 7720, 7975, 11142, 11877, 14628, 15459, 30946, 31201, 62432, 69855, 76126, 80221, 89820, 91611, 183258, 192601, 208600, 214231, 428502, 431573, 863188, 900563
OFFSET
1,3
COMMENTS
n is prime if and only if a(n) = 2*a(n-1)+n-1. - Robert Israel, Aug 24 2016
LINKS
FORMULA
a(n) = A320426(n) - 1. - Gus Wiseman, May 08 2021
EXAMPLE
From Gus Wiseman, May 08 2021: (Start)
The a(2) = 1 through a(6) = 21 sets:
{1,2} {1,2} {1,2} {1,2} {1,2}
{1,3} {1,3} {1,3} {1,3}
{2,3} {1,4} {1,4} {1,4}
{1,2,3} {2,3} {1,5} {1,5}
{3,4} {2,3} {1,6}
{1,2,3} {2,5} {2,3}
{1,3,4} {3,4} {2,5}
{3,5} {3,4}
{4,5} {3,5}
{1,2,3} {4,5}
{1,2,5} {5,6}
{1,3,4} {1,2,3}
{1,3,5} {1,2,5}
{1,4,5} {1,3,4}
{2,3,5} {1,3,5}
{3,4,5} {1,4,5}
{1,2,3,5} {1,5,6}
{1,3,4,5} {2,3,5}
{3,4,5}
{1,2,3,5}
{1,3,4,5}
(End)
MAPLE
f:= proc(S) option remember;
local s, Sp;
if S = {} then return 1 fi;
s:= S[-1];
Sp:= S[1..-2];
procname(Sp) + procname(select(t -> igcd(t, s)=1, Sp))
end proc:
seq(f({$1..n}) - n - 1, n=1..50); # Robert Israel, Aug 24 2016
MATHEMATICA
f[S_] := f[S] = Module[{s, Sp}, If[S == {}, Return[1]]; s = S[[-1]]; Sp = S[[1;; -2]]; f[Sp] + f[Select[Sp, GCD[#, s] == 1&]]];
Table[f[Range[n]] - n - 1, {n, 1, 50}] (* Jean-François Alcover, Sep 15 2022, after Robert Israel *)
PROG
(Sage)
from sage.combinat.subsets_pairwise import PairwiseCompatibleSubsets
def is_coprime(x, y): return gcd(x, y) == 1
max_n = 40
seq = []
for n in range(1, max_n+1):
P = PairwiseCompatibleSubsets(range(1, n+1), is_coprime)
a_n = len([1 for s in P.list() if len(s) > 1])
seq.append(a_n)
print(seq)
(PARI) f(n, k=1)=if(n==1, return(2)); if(gcd(k, n)==1, f(n-1, n*k)) + f(n-1, k)
a(n)=f(n)-n-1 \\ Charles R Greathouse IV, Aug 24 2016
CROSSREFS
The case of pairs is A015614.
The indivisible instead of coprime version is A051026(n) - n.
Allowing empty sets and singletons gives A084422.
The relatively prime instead of pairwise coprime version is A085945(n) - 1.
Allowing all singletons gives A187106.
Allowing only the singleton {1} gives A320426.
Row sums of A320436, each minus one.
The maximal case is counted by A343659.
The version for sets of divisors is A343655(n) - 1.
A000005 counts divisors.
A186972 counts pairwise coprime k-sets containing n.
A186974 counts pairwise coprime k-sets.
A326675 ranks pairwise coprime non-singleton sets.
Sequence in context: A077274 A292850 A080650 * A357041 A318025 A005509
KEYWORD
nonn
AUTHOR
Robert C. Lyons, Aug 23 2016
EXTENSIONS
Name and example edited by Robert Israel, Aug 24 2016
STATUS
approved